當前位置: 首頁>>代碼示例>>Python>>正文


Python layers.average方法代碼示例

本文整理匯總了Python中keras.layers.average方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.average方法的具體用法?Python layers.average怎麽用?Python layers.average使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.layers的用法示例。


在下文中一共展示了layers.average方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_dense_elementwise_params

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import average [as 別名]
def test_dense_elementwise_params(self):
        options = dict(modes=[add, multiply, concatenate, average, maximum])

        def build_model(mode):
            x1 = Input(shape=(3,))
            x2 = Input(shape=(3,))
            y1 = Dense(4)(x1)
            y2 = Dense(4)(x2)
            z = mode([y1, y2])
            model = Model([x1, x2], z)
            return mode, model

        product = itertools.product(*options.values())
        args = [build_model(p[0]) for p in product]
        print("Testing a total of %s cases. This could take a while" % len(args))
        for param, model in args:
            self._run_test(model, param) 
開發者ID:apple,項目名稱:coremltools,代碼行數:19,代碼來源:test_keras2_numeric.py

示例2: test_merge_average

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import average [as 別名]
def test_merge_average():
    i1 = layers.Input(shape=(4, 5))
    i2 = layers.Input(shape=(4, 5))
    o = layers.average([i1, i2])
    assert o._keras_shape == (None, 4, 5)
    model = models.Model([i1, i2], o)

    avg_layer = layers.Average()
    o2 = avg_layer([i1, i2])
    assert avg_layer.output_shape == (None, 4, 5)

    x1 = np.random.random((2, 4, 5))
    x2 = np.random.random((2, 4, 5))
    out = model.predict([x1, x2])
    assert out.shape == (2, 4, 5)
    assert_allclose(out, 0.5 * (x1 + x2), atol=1e-4) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:18,代碼來源:merge_test.py

示例3: test_imdb_fasttext_first_2

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import average [as 別名]
def test_imdb_fasttext_first_2(self):

        max_features = 10
        max_len = 6
        embedding_dims = 4
        pool_length = 2

        model = Sequential()
        model.add(Embedding(max_features, embedding_dims, input_length=max_len))
        # we add a AveragePooling1D, which will average the embeddings
        # of all words in the document
        model.add(AveragePooling1D(pool_size=pool_length))

        self._test_model(model, one_dim_seq_flags=[True]) 
開發者ID:apple,項目名稱:coremltools,代碼行數:16,代碼來源:test_keras2_numeric.py

示例4: fconcatenate

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import average [as 別名]
def fconcatenate(path_orig, path_down):
    if path_orig._keras_shape == path_down._keras_shape:
        path_down_cropped = path_down
    else:
        crop_x_1 = int(np.ceil((path_down._keras_shape[2] - path_orig._keras_shape[2]) / 2))
        crop_x_0 = path_down._keras_shape[2] - path_orig._keras_shape[2] - crop_x_1
        crop_y_1 = int(np.ceil((path_down._keras_shape[3] - path_orig._keras_shape[3]) / 2))
        crop_y_0 = path_down._keras_shape[3] - path_orig._keras_shape[3] - crop_y_1
        crop_z_1 = int(np.ceil((path_down._keras_shape[4] - path_orig._keras_shape[4]) / 2))
        crop_z_0 = path_down._keras_shape[4] - path_orig._keras_shape[4] - crop_z_1
        path_down_cropped = Cropping3D(cropping=((crop_x_0, crop_x_1), (crop_y_0, crop_y_1), (crop_z_0, crop_z_1)))(path_down)
    connected = average([path_orig, path_down_cropped])
    return connected 
開發者ID:thomaskuestner,項目名稱:CNNArt,代碼行數:15,代碼來源:MSnetworks.py

示例5: two_stream_fuse

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import average [as 別名]
def two_stream_fuse(self):
        # spatial stream (frozen)
        cnn_spatial_multi = self.cnn_spatial_multi()

        # temporal stream (frozen)
        cnn_temporal_multi = self.cnn_temporal_multi()

        # fused by taking average
        outputs = average([cnn_spatial_multi.output, cnn_temporal_multi.output])

        model = Model([cnn_spatial_multi.input, cnn_temporal_multi.input], outputs)

        return model

    # CNN model for the temporal stream with multiple inputs 
開發者ID:wushidonguc,項目名稱:two-stream-action-recognition-keras,代碼行數:17,代碼來源:fuse_validate_model.py

示例6: cnn_spatial

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import average [as 別名]
def cnn_spatial(self):
        base_model = InceptionV3(weights='imagenet', include_top=False)
    
        # add a global spatial average pooling layer
        x = base_model.output
        x = GlobalAveragePooling2D()(x)
        # let's add a fully-connected layer
        x = Dense(1024, activation='relu')(x)
        # and a logistic layer
        predictions = Dense(self.nb_classes, activation='softmax')(x)
    
        model = Model(inputs=base_model.input, outputs=predictions)
        return model

    # CNN model for the temporal stream 
開發者ID:wushidonguc,項目名稱:two-stream-action-recognition-keras,代碼行數:17,代碼來源:fuse_validate_model.py

示例7: eltwise

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import average [as 別名]
def eltwise(layer, layer_in, layerId):
    out = {}
    if (layer['params']['layer_type'] == 'Multiply'):
        # This input reverse is to handle visualization
        out[layerId] = multiply(layer_in[::-1])
    elif (layer['params']['layer_type'] == 'Sum'):
        out[layerId] = add(layer_in[::-1])
    elif (layer['params']['layer_type'] == 'Average'):
        out[layerId] = average(layer_in[::-1])
    elif (layer['params']['layer_type'] == 'Dot'):
        out[layerId] = dot(layer_in[::-1], -1)
    else:
        out[layerId] = maximum(layer_in[::-1])
    return out 
開發者ID:Cloud-CV,項目名稱:Fabrik,代碼行數:16,代碼來源:layers_export.py

示例8: fCreateModel_SPP_MultiPath

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import average [as 別名]
def fCreateModel_SPP_MultiPath(patchSize, patchSize2, dr_rate=0.0, iPReLU=0, l2_reg=1e-6):
    # Total params: 2,057,510
    # There are 2 pathway, whose receptive fields are in multiple relation.
    # Their outputs are averaged as the final prediction
    # The third down sampling convolutional layer in each pathway is replaced by the SPP module
    Strides = fgetStrides()
    kernelnumber = fgetKernelNumber()
    
    sharedConv1 = fCreateVNet_Block
    sharedDown1 = fCreateVNet_DownConv_Block
    sharedConv2 = fCreateVNet_Block
    sharedDown2 = fCreateVNet_DownConv_Block
    sharedConv3 = fCreateVNet_Block
    sharedSPP = fSPP
    
    inp1 = Input(shape=(1, patchSize[0], patchSize[1], patchSize[2]))
    inp1_Conv_1 = sharedConv1(inp1, kernelnumber[0], type=fgetLayerNumConv(), l2_reg=l2_reg)
    inp1_DownConv_1 = sharedDown1(inp1_Conv_1, inp1_Conv_1._keras_shape[1], Strides[0],
                                                     iPReLU=iPReLU, dr_rate=dr_rate, l2_reg=l2_reg)
    inp1_Conv_2 = sharedConv2(inp1_DownConv_1, kernelnumber[1], type=fgetLayerNumConv(), l2_reg=l2_reg)
    inp1_DownConv_2 = sharedDown2(inp1_Conv_2, inp1_Conv_2._keras_shape[1], Strides[1],
                                                   iPReLU=iPReLU, dr_rate=dr_rate, l2_reg=l2_reg)
    inp1_Conv_3 = sharedConv3(inp1_DownConv_2, kernelnumber[2], type=fgetLayerNumConv(), l2_reg=l2_reg)
    inp1_SPP = sharedSPP(inp1_Conv_3, level=3)
    
    inp2 = Input(shape=(1, patchSize2[0], patchSize2[1], patchSize2[2]))
    inp2_Conv_1 = sharedConv1(inp2, kernelnumber[0], type=fgetLayerNumConv(), l2_reg=l2_reg)
    inp2_DownConv_1 = sharedDown1(inp2_Conv_1, inp2_Conv_1._keras_shape[1], Strides[0],
                                                     iPReLU=iPReLU, dr_rate=dr_rate, l2_reg=l2_reg)
    inp2_Conv_2 = sharedConv2(inp2_DownConv_1, kernelnumber[1], type=fgetLayerNumConv(), l2_reg=l2_reg)
    inp2_DownConv_2 = sharedDown2(inp2_Conv_2, inp2_Conv_2._keras_shape[1], Strides[1],
                                                   iPReLU=iPReLU, dr_rate=dr_rate, l2_reg=l2_reg)
    inp2_Conv_3 = sharedConv3(inp2_DownConv_2, kernelnumber[2], type=fgetLayerNumConv(), l2_reg=l2_reg)
    inp2_SPP = sharedSPP(inp2_Conv_3, level=3)    
    SPP_aver = average([inp1_SPP, inp2_SPP])
    
    dropout_out = Dropout(dr_rate)(SPP_aver)
    dense_out = Dense(units=2,
                          kernel_initializer='normal',
                          kernel_regularizer=l2(l2_reg))(dropout_out)
    output_fc = Activation('softmax')(dense_out)
    model_shared = Model(inputs=[inp1, inp2], outputs = output_fc)    
    return model_shared 
開發者ID:thomaskuestner,項目名稱:CNNArt,代碼行數:45,代碼來源:MSnetworks.py

示例9: fCreateModel_FCN_MultiFM

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import average [as 別名]
def fCreateModel_FCN_MultiFM(patchSize, dr_rate=0.0, iPReLU=0,l1_reg=0, l2_reg=1e-6):
    # Total params: 1,420,549
    # The dense layer is repleced by a convolutional layer with filters=2 for the two classes
    # The FM from the third down scaled convolutional layer is upsempled by deconvolution and
    # added with the FM from the second down scaled convolutional layer.
    # The combined FM goes through a convolutional layer with filters=2 for the two classes
    # The two predictions are averages as the final result.
    Strides = fgetStrides()
    kernelnumber = fgetKernelNumber()
    inp = Input(shape=(1, int(patchSize[0]), int(patchSize[1]), int(patchSize[2])))

    after_Conv_1 = fCreateVNet_Block(inp, kernelnumber[0], type=fgetLayerNumConv(), l2_reg=l2_reg)
    after_DownConv_1 = fCreateVNet_DownConv_Block(after_Conv_1, after_Conv_1._keras_shape[1], Strides[0],
                                                     iPReLU=iPReLU, dr_rate=dr_rate, l2_reg=l2_reg)

    after_Conv_2 = fCreateVNet_Block(after_DownConv_1, kernelnumber[1], type=fgetLayerNumConv(), l2_reg=l2_reg)
    after_DownConv_2 = fCreateVNet_DownConv_Block(after_Conv_2, after_Conv_2._keras_shape[1], Strides[1],
                                                   iPReLU=iPReLU, dr_rate=dr_rate, l2_reg=l2_reg)

    after_Conv_3 = fCreateVNet_Block(after_DownConv_2, kernelnumber[2], type=fgetLayerNumConv(), l2_reg=l2_reg)
    after_DownConv_3 = fCreateVNet_DownConv_Block(after_Conv_3, after_Conv_3._keras_shape[1], Strides[2],
                                                   iPReLU=iPReLU, dr_rate=dr_rate, l2_reg=l2_reg)

    # fully convolution over the FM from the deepest level
    dropout_out1 = Dropout(dr_rate)(after_DownConv_3)
    fclayer1 = Conv3D(2,
                       kernel_size=(1,1,1),
                       kernel_initializer='he_normal',
                       weights=None,
                       padding='valid',
                       strides=(1, 1, 1),
                       kernel_regularizer=l1_l2(l1_reg, l2_reg),
                       )(dropout_out1)
    fclayer1 = GlobalAveragePooling3D()(fclayer1)
    
    # Upsample FM from the deepest level, add with FM from level 2, 
    UpedFM_Level3 = Conv3DTranspose(filters=97, kernel_size=(3,3,1), strides=(2,2,1), padding='same')(after_DownConv_3)
    conbined_FM_Level23 = add([UpedFM_Level3, after_DownConv_2])    
    fclayer2 = Conv3D(2,
                       kernel_size=(1,1,1),
                       kernel_initializer='he_normal',
                       weights=None,
                       padding='valid',
                       strides=(1, 1, 1),
                       kernel_regularizer=l1_l2(l1_reg, l2_reg),
                       )(conbined_FM_Level23)
    fclayer2 = GlobalAveragePooling3D()(fclayer2)

    # combine the two predictions using average
    fcl_aver = average([fclayer1, fclayer2])
    predict = Activation('softmax')(fcl_aver)
    cnn_fcl_msfm = Model(inputs=inp, outputs=predict)
    return cnn_fcl_msfm 
開發者ID:thomaskuestner,項目名稱:CNNArt,代碼行數:55,代碼來源:MSnetworks.py


注:本文中的keras.layers.average方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。