本文整理匯總了Python中keras.layers.add方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.add方法的具體用法?Python layers.add怎麽用?Python layers.add使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類keras.layers
的用法示例。
在下文中一共展示了layers.add方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: g_block
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import add [as 別名]
def g_block(inp, fil, u = True):
if u:
out = UpSampling2D(interpolation = 'bilinear')(inp)
else:
out = Activation('linear')(inp)
skip = Conv2D(fil, 1, padding = 'same', kernel_initializer = 'he_normal')(out)
out = Conv2D(filters = fil, kernel_size = 3, padding = 'same', kernel_initializer = 'he_normal')(out)
out = LeakyReLU(0.2)(out)
out = Conv2D(filters = fil, kernel_size = 3, padding = 'same', kernel_initializer = 'he_normal')(out)
out = LeakyReLU(0.2)(out)
out = Conv2D(fil, 1, padding = 'same', kernel_initializer = 'he_normal')(out)
out = add([out, skip])
out = LeakyReLU(0.2)(out)
return out
示例2: d_block
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import add [as 別名]
def d_block(inp, fil, p = True):
skip = Conv2D(fil, 1, padding = 'same', kernel_initializer = 'he_normal')(inp)
out = Conv2D(filters = fil, kernel_size = 3, padding = 'same', kernel_initializer = 'he_normal')(inp)
out = LeakyReLU(0.2)(out)
out = Conv2D(filters = fil, kernel_size = 3, padding = 'same', kernel_initializer = 'he_normal')(out)
out = LeakyReLU(0.2)(out)
out = Conv2D(fil, 1, padding = 'same', kernel_initializer = 'he_normal')(out)
out = add([out, skip])
out = LeakyReLU(0.2)(out)
if p:
out = AveragePooling2D()(out)
return out
示例3: channel_spatial_squeeze_excite
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import add [as 別名]
def channel_spatial_squeeze_excite(input, ratio=16):
''' Create a spatial squeeze-excite block
Args:
input: input tensor
filters: number of output filters
Returns: a keras tensor
References
- [Squeeze and Excitation Networks](https://arxiv.org/abs/1709.01507)
- [Concurrent Spatial and Channel Squeeze & Excitation in Fully Convolutional Networks](https://arxiv.org/abs/1803.02579)
'''
cse = squeeze_excite_block(input, ratio)
sse = spatial_squeeze_excite_block(input)
x = add([cse, sse])
return x
示例4: channel_spatial_squeeze_excite
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import add [as 別名]
def channel_spatial_squeeze_excite(input_tensor, ratio=16):
""" Create a spatial squeeze-excite block
Args:
input_tensor: input Keras tensor
ratio: number of output filters
Returns: a Keras tensor
References
- [Squeeze and Excitation Networks](https://arxiv.org/abs/1709.01507)
- [Concurrent Spatial and Channel Squeeze & Excitation in Fully Convolutional Networks](https://arxiv.org/abs/1803.02579)
"""
cse = squeeze_excite_block(input_tensor, ratio)
sse = spatial_squeeze_excite_block(input_tensor)
x = add([cse, sse])
return x
示例5: resnet_first_block_first_module
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import add [as 別名]
def resnet_first_block_first_module(input, channel_depth):
residual_input = input
stride = 1
residual_input = Conv2D(channel_depth, kernel_size=1, strides=1, padding="same", kernel_initializer="he_normal")(
residual_input)
residual_input = BatchNormalization()(residual_input)
input = Conv2D(int(channel_depth / 4), kernel_size=1, strides=stride, padding="same",
kernel_initializer="he_normal")(input)
input = BatchNormalization()(input)
input = Activation("relu")(input)
input = Conv2D(int(channel_depth / 4), kernel_size=3, strides=stride, padding="same",
kernel_initializer="he_normal")(input)
input = BatchNormalization()(input)
input = Activation("relu")(input)
input = Conv2D(channel_depth, kernel_size=1, strides=stride, padding="same", kernel_initializer="he_normal")(input)
input = BatchNormalization()(input)
input = add([input, residual_input])
input = Activation("relu")(input)
return input
示例6: _octresnet_final_bottleneck_block
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import add [as 別名]
def _octresnet_final_bottleneck_block(ip, filters, alpha=0.5, strides=(1, 1),
downsample_shortcut=False,
expansion=4):
x_high_res, x_low_res = ip
x_high, x_low = oct_conv_bn_relu(x_high_res, x_low_res, filters, kernel_size=(1, 1),
alpha=alpha)
x_high, x_low = oct_conv_bn_relu(x_high, x_low, filters, kernel_size=(3, 3),
strides=strides, alpha=alpha)
final_filters = int(filters * expansion)
x_high = final_oct_conv_bn_relu(x_high, x_low, final_filters, kernel_size=(1, 1),
activation=False)
if downsample_shortcut:
x_high_res = final_oct_conv_bn_relu(x_high_res, x_low_res, final_filters, kernel_size=(1, 1),
strides=strides, activation=False)
x = add([x_high, x_high_res])
x = ReLU()(x)
return x
示例7: _bottleneck_original
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import add [as 別名]
def _bottleneck_original(ip, filters, strides=(1, 1), downsample_shortcut=False,
expansion=4):
final_filters = int(filters * expansion)
shortcut = ip
x = _conv_bn_relu(ip, filters, kernel_size=(1, 1))
x = _conv_bn_relu(x, filters, kernel_size=(3, 3), strides=strides)
x = _conv_bn_relu(x, final_filters, kernel_size=(1, 1), activation=False)
if downsample_shortcut:
shortcut = _conv_block(shortcut, final_filters, kernel_size=(1, 1),
strides=strides)
x = add([x, shortcut])
x = ReLU()(x)
return x
示例8: test_tiny_inner_product
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import add [as 別名]
def test_tiny_inner_product(self, model_precision=_MLMODEL_FULL_PRECISION):
np.random.seed(1988)
# Define a model
model = Sequential()
model.add(Dense(2, input_shape=(2,)))
# Test all zeros
model.set_weights([np.random.rand(*w.shape) for w in model.get_weights()])
self._test_model(model, mode="zeros", model_precision=model_precision)
# Test all ones
model.set_weights([np.ones(w.shape) for w in model.get_weights()])
self._test_model(model, mode="ones", model_precision=model_precision)
# Test random
model.set_weights([np.random.rand(*w.shape) for w in model.get_weights()])
self._test_model(model, model_precision=model_precision)
示例9: test_tiny_conv_ones
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import add [as 別名]
def test_tiny_conv_ones(self, model_precision=_MLMODEL_FULL_PRECISION):
np.random.seed(1988)
input_dim = 10
input_shape = (input_dim, input_dim, 1)
num_kernels, kernel_height, kernel_width = 3, 5, 5
# Define a model
model = Sequential()
model.add(
Conv2D(
input_shape=input_shape,
filters=num_kernels,
kernel_size=(kernel_height, kernel_width),
)
)
# Set some random weights
model.set_weights([np.ones(w.shape) for w in model.get_weights()])
# Test the keras model
self._test_model(model, model_precision=model_precision)
示例10: test_tiny_conv_random
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import add [as 別名]
def test_tiny_conv_random(self, model_precision=_MLMODEL_FULL_PRECISION):
np.random.seed(1988)
input_dim = 10
input_shape = (input_dim, input_dim, 1)
num_kernels, kernel_height, kernel_width = 3, 5, 5
# Define a model
model = Sequential()
model.add(
Conv2D(
input_shape=input_shape,
filters=num_kernels,
kernel_size=(kernel_height, kernel_width),
)
)
# Set some random weights
model.set_weights([np.random.rand(*w.shape) for w in model.get_weights()])
# Test the keras model
self._test_model(model, model_precision=model_precision)
示例11: test_tiny_conv_dilated
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import add [as 別名]
def test_tiny_conv_dilated(self, model_precision=_MLMODEL_FULL_PRECISION):
np.random.seed(1988)
input_dim = 10
input_shape = (input_dim, input_dim, 1)
num_kernels, kernel_height, kernel_width = 3, 5, 5
# Define a model
model = Sequential()
model.add(
Conv2D(
input_shape=input_shape,
dilation_rate=(2, 2),
filters=num_kernels,
kernel_size=(kernel_height, kernel_width),
)
)
# Set some random weights
model.set_weights([np.random.rand(*w.shape) for w in model.get_weights()])
# Test the keras model
self._test_model(model, model_precision=model_precision)
示例12: ss_bt
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import add [as 別名]
def ss_bt(self, x, dilation, strides=(1, 1), padding='same'):
x1, x2 = self.channel_split(x)
filters = (int(x.shape[-1]) // self.groups)
x1 = layers.Conv2D(filters, kernel_size=(3, 1), strides=strides, padding=padding)(x1)
x1 = layers.Activation('relu')(x1)
x1 = layers.Conv2D(filters, kernel_size=(1, 3), strides=strides, padding=padding)(x1)
x1 = layers.BatchNormalization()(x1)
x1 = layers.Activation('relu')(x1)
x1 = layers.Conv2D(filters, kernel_size=(3, 1), strides=strides, padding=padding, dilation_rate=(dilation, 1))(
x1)
x1 = layers.Activation('relu')(x1)
x1 = layers.Conv2D(filters, kernel_size=(1, 3), strides=strides, padding=padding, dilation_rate=(1, dilation))(
x1)
x1 = layers.BatchNormalization()(x1)
x1 = layers.Activation('relu')(x1)
x2 = layers.Conv2D(filters, kernel_size=(1, 3), strides=strides, padding=padding)(x2)
x2 = layers.Activation('relu')(x2)
x2 = layers.Conv2D(filters, kernel_size=(3, 1), strides=strides, padding=padding)(x2)
x2 = layers.BatchNormalization()(x2)
x2 = layers.Activation('relu')(x2)
x2 = layers.Conv2D(filters, kernel_size=(1, 3), strides=strides, padding=padding, dilation_rate=(1, dilation))(
x2)
x2 = layers.Activation('relu')(x2)
x2 = layers.Conv2D(filters, kernel_size=(3, 1), strides=strides, padding=padding, dilation_rate=(dilation, 1))(
x2)
x2 = layers.BatchNormalization()(x2)
x2 = layers.Activation('relu')(x2)
x_concat = layers.concatenate([x1, x2], axis=-1)
x_add = layers.add([x, x_concat])
output = self.channel_shuffle(x_add)
return output
開發者ID:JACKYLUO1991,項目名稱:Face-skin-hair-segmentaiton-and-skin-color-evaluation,代碼行數:34,代碼來源:lednet.py
示例13: apn_module
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import add [as 別名]
def apn_module(self, x):
def right(x):
x = layers.AveragePooling2D()(x)
x = layers.Conv2D(self.classes, kernel_size=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.UpSampling2D(interpolation='bilinear')(x)
return x
def conv(x, filters, kernel_size, stride):
x = layers.Conv2D(filters, kernel_size=kernel_size, strides=(stride, stride), padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
return x
x_7 = conv(x, int(x.shape[-1]), 7, stride=2)
x_5 = conv(x_7, int(x.shape[-1]), 5, stride=2)
x_3 = conv(x_5, int(x.shape[-1]), 3, stride=2)
x_3_1 = conv(x_3, self.classes, 3, stride=1)
x_3_1_up = layers.UpSampling2D(interpolation='bilinear')(x_3_1)
x_5_1 = conv(x_5, self.classes, 5, stride=1)
x_3_5 = layers.add([x_5_1, x_3_1_up])
x_3_5_up = layers.UpSampling2D(interpolation='bilinear')(x_3_5)
x_7_1 = conv(x_7, self.classes, 3, stride=1)
x_3_5_7 = layers.add([x_7_1, x_3_5_up])
x_3_5_7_up = layers.UpSampling2D(interpolation='bilinear')(x_3_5_7)
x_middle = conv(x, self.classes, 1, stride=1)
x_middle = layers.multiply([x_3_5_7_up, x_middle])
x_right = right(x)
x_middle = layers.add([x_middle, x_right])
return x_middle
開發者ID:JACKYLUO1991,項目名稱:Face-skin-hair-segmentaiton-and-skin-color-evaluation,代碼行數:37,代碼來源:lednet.py
示例14: identity_block
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import add [as 別名]
def identity_block(input_tensor, kernel_size, filters, stage, block):
"""The identity block is the block that has no conv layer at shortcut.
# Arguments
input_tensor: input tensor
kernel_size: default 3, the kernel size of middle conv layer at main path
filters: list of integers, the filters of 3 conv layer at main path
stage: integer, current stage label, used for generating layer names
block: 'a','b'keras.., current block label, used for generating layer names
# Returns
Output tensor for the block.
"""
filters1, filters2, filters3 = filters
if K.image_data_format() == 'channels_last':
bn_axis = 3
else:
bn_axis = 1
conv_name_base = 'res' + str(stage) + block + '_branch'
bn_name_base = 'bn' + str(stage) + block + '_branch'
x = Conv2D(filters1, (1, 1), name=conv_name_base + '2a')(input_tensor)
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2a')(x)
x = Activation('relu')(x)
x = Conv2D(filters2, kernel_size,
padding='same', name=conv_name_base + '2b')(x)
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2b')(x)
x = Activation('relu')(x)
x = Conv2D(filters3, (1, 1), name=conv_name_base + '2c')(x)
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2c')(x)
x = layers.add([x, input_tensor])
x = Activation('relu')(x)
return x
示例15: identity_block
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import add [as 別名]
def identity_block(input_tensor, kernel_size, filters, stage, block):
filters1, filters2, filters3 = filters
if IMAGE_ORDERING == 'channels_last':
bn_axis = 3
else:
bn_axis = 1
conv_name_base = 'res' + str(stage) + block + '_branch'
bn_name_base = 'bn' + str(stage) + block + '_branch'
# 1x1壓縮
x = Conv2D(filters1, (1, 1) , data_format=IMAGE_ORDERING , name=conv_name_base + '2a')(input_tensor)
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2a')(x)
x = Activation('relu')(x)
# 3x3提取特征
x = Conv2D(filters2, kernel_size , data_format=IMAGE_ORDERING ,
padding='same', name=conv_name_base + '2b')(x)
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2b')(x)
x = Activation('relu')(x)
# 1x1擴張特征
x = Conv2D(filters3 , (1, 1), data_format=IMAGE_ORDERING , name=conv_name_base + '2c')(x)
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2c')(x)
# 殘差網絡
x = layers.add([x, input_tensor])
x = Activation('relu')(x)
return x
# 與identity_block最大差距為,其可以減少wh,進行壓縮