本文整理匯總了Python中keras.layers.ZeroPadding1D方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.ZeroPadding1D方法的具體用法?Python layers.ZeroPadding1D怎麽用?Python layers.ZeroPadding1D使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類keras.layers
的用法示例。
在下文中一共展示了layers.ZeroPadding1D方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_tiny_conv_pad_1d_random
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import ZeroPadding1D [as 別名]
def test_tiny_conv_pad_1d_random(self, model_precision=_MLMODEL_FULL_PRECISION):
np.random.seed(1988)
input_dim = 2
input_length = 10
filter_length = 3
nb_filters = 4
model = Sequential()
model.add(
Conv1D(
nb_filters,
kernel_size=filter_length,
padding="same",
input_shape=(input_length, input_dim),
)
)
model.add(ZeroPadding1D(padding=2))
# Set some random weights
model.set_weights([np.random.rand(*w.shape) for w in model.get_weights()])
# Test the keras model
self._test_model(model, model_precision=model_precision)
示例2: test_keras_import
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import ZeroPadding1D [as 別名]
def test_keras_import(self):
# Pad 1D
model = Sequential()
model.add(ZeroPadding1D(2, input_shape=(224, 3)))
model.add(Conv1D(32, 7, strides=2))
model.build()
self.pad_test(model, 'pad_w', 2)
# Pad 2D
model = Sequential()
model.add(ZeroPadding2D(2, input_shape=(224, 224, 3)))
model.add(Conv2D(32, 7, strides=2))
model.build()
self.pad_test(model, 'pad_w', 2)
# Pad 3D
model = Sequential()
model.add(ZeroPadding3D(2, input_shape=(224, 224, 224, 3)))
model.add(Conv3D(32, 7, strides=2))
model.build()
self.pad_test(model, 'pad_w', 2)
# ********** Export json tests **********
# ********** Data Layers Test **********
示例3: call
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import ZeroPadding1D [as 別名]
def call(self, inputs):
x_input_pad = ZeroPadding1D((self.filter_size-1, self.filter_size-1))(inputs)
conv_1d = Conv1D(filters=self.filter_num,
kernel_size=self.filter_size,
strides=1,
padding='VALID',
kernel_initializer='normal', # )(x_input_pad)
activation='tanh')(x_input_pad)
return conv_1d
示例4: build_ds5_no_ctc_and_xfer_weights
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import ZeroPadding1D [as 別名]
def build_ds5_no_ctc_and_xfer_weights(loaded_model, input_dim=161, fc_size=1024, rnn_size=512, output_dim=29, initialization='glorot_uniform',
conv_layers=4):
""" Pure CNN implementation"""
K.set_learning_phase(0)
for ind, i in enumerate(loaded_model.layers):
print(ind, i)
kernel_size = 11 #
conv_depth_1 = 64 #
conv_depth_2 = 256 #
input_data = Input(shape=(None, input_dim), name='the_input') #batch x time x spectro size
conv = ZeroPadding1D(padding=(0, 2048))(input_data) #pad on time dimension
x = Conv1D(filters=128, name='conv_1', kernel_size=kernel_size, padding='valid', activation='relu', strides=2,
weights = loaded_model.layers[2].get_weights())(conv)
# x = Conv1D(filters=1024, name='conv_2', kernel_size=kernel_size, padding='valid', activation='relu', strides=2,
# weights=loaded_model.layers[3].get_weights())(x)
# Last Layer 5+6 Time Dist Dense Layer & Softmax
x = TimeDistributed(Dense(fc_size, activation='relu',
weights=loaded_model.layers[3].get_weights()))(x)
y_pred = TimeDistributed(Dense(output_dim, name="y_pred", activation="softmax"))(x)
model = Model(inputs=input_data, outputs=y_pred)
return model
示例5: cnn_city
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import ZeroPadding1D [as 別名]
def cnn_city(input_dim=161, fc_size=1024, rnn_size=512, output_dim=29, initialization='glorot_uniform',
conv_layers=4):
""" Pure CNN implementation
Architecture:
1 Convolutional Layers
1 Fully connected Dense
1 Softmax output
Details:s
- Network does not dynamically adapt to maximum audio size in the first convolutional layer. Max conv
length padded at 2048 chars, otherwise use_conv=False
Reference:
"""
#filters = outputsize
#kernal_size = heigth and width of conv window
#strides = stepsize on conv window
kernel_size = 11 #
conv_depth_1 = 64 #
conv_depth_2 = 256 #
input_data = Input(shape=(None, input_dim), name='the_input') #batch x time x spectro size
conv = ZeroPadding1D(padding=(0, 2048))(input_data) #pad on time dimension
x = Conv1D(filters=128, name='conv_1', kernel_size=kernel_size, padding='valid', activation='relu', strides=2)(conv)
# x = Conv1D(filters=1024, name='conv_2', kernel_size=kernel_size, padding='valid', activation='relu', strides=2)(x)
# Last Layer 5+6 Time Dist Dense Layer & Softmax
x = TimeDistributed(Dense(fc_size, activation='relu'))(x)
y_pred = TimeDistributed(Dense(output_dim, name="y_pred", activation="softmax"))(x)
# labels = K.placeholder(name='the_labels', ndim=1, dtype='int32')
labels = Input(name='the_labels', shape=[None,], dtype='int32')
input_length = Input(name='input_length', shape=[1], dtype='int32')
label_length = Input(name='label_length', shape=[1], dtype='int32')
# Keras doesn't currently support loss funcs with extra parameters
# so CTC loss is implemented in a lambda layer
loss_out = Lambda(ctc_lambda_func, output_shape=(1,), name='ctc')([y_pred,
labels,
input_length,
label_length])
model = Model(inputs=[input_data, labels, input_length, label_length], outputs=loss_out)
return model
示例6: create_default_model
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import ZeroPadding1D [as 別名]
def create_default_model(config_data):
nb_filter = 200
filter_length = 6
hidden_dims = nb_filter
embedding_matrix = load_embedding_matrix(config_data)
max_features = embedding_matrix.shape[0]
embedding_dims = embedding_matrix.shape[1]
max_len = config_data['max_sentence_length']
logging.info('Build Model...')
logging.info('Embedding Dimensions: ({},{})'.format(max_features, embedding_dims))
main_input = Input(batch_shape=(None, max_len), dtype='int32', name='main_input')
if not config_data.get('random_embedding', None):
logging.info('Pretrained Word Embeddings')
embeddings = Embedding(
max_features,
embedding_dims,
input_length=max_len,
weights=[embedding_matrix],
trainable=False
)(main_input)
else:
logging.info('Random Word Embeddings')
embeddings = Embedding(max_features, embedding_dims, init='lecun_uniform', input_length=max_len)(main_input)
zeropadding = ZeroPadding1D(filter_length - 1)(embeddings)
conv1 = Convolution1D(
nb_filter=nb_filter,
filter_length=filter_length,
border_mode='valid',
activation='relu',
subsample_length=1)(zeropadding)
max_pooling1 = MaxPooling1D(pool_length=4, stride=2)(conv1)
conv2 = Convolution1D(
nb_filter=nb_filter,
filter_length=filter_length,
border_mode='valid',
activation='relu',
subsample_length=1)(max_pooling1)
max_pooling2 = MaxPooling1D(pool_length=conv2._keras_shape[1])(conv2)
flatten = Flatten()(max_pooling2)
hidden = Dense(hidden_dims)(flatten)
softmax_layer1 = Dense(3, activation='softmax', name='sentiment_softmax', init='lecun_uniform')(hidden)
model = Model(input=[main_input], output=softmax_layer1)
test_model = Model(input=[main_input], output=[softmax_layer1, hidden])
return model, test_model
示例7: pooling
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import ZeroPadding1D [as 別名]
def pooling(layer, layer_in, layerId, tensor=True):
poolMap = {
('1D', 'MAX'): MaxPooling1D,
('2D', 'MAX'): MaxPooling2D,
('3D', 'MAX'): MaxPooling3D,
('1D', 'AVE'): AveragePooling1D,
('2D', 'AVE'): AveragePooling2D,
('3D', 'AVE'): AveragePooling3D,
}
out = {}
layer_type = layer['params']['layer_type']
pool_type = layer['params']['pool']
padding = get_padding(layer)
if (layer_type == '1D'):
strides = layer['params']['stride_w']
kernel = layer['params']['kernel_w']
if (padding == 'custom'):
p_w = layer['params']['pad_w']
out[layerId + 'Pad'] = ZeroPadding1D(padding=p_w)(*layer_in)
padding = 'valid'
layer_in = [out[layerId + 'Pad']]
elif (layer_type == '2D'):
strides = (layer['params']['stride_h'], layer['params']['stride_w'])
kernel = (layer['params']['kernel_h'], layer['params']['kernel_w'])
if (padding == 'custom'):
p_h, p_w = layer['params']['pad_h'], layer['params']['pad_w']
out[layerId + 'Pad'] = ZeroPadding2D(padding=(p_h, p_w))(*layer_in)
padding = 'valid'
layer_in = [out[layerId + 'Pad']]
else:
strides = (layer['params']['stride_h'], layer['params']['stride_w'],
layer['params']['stride_d'])
kernel = (layer['params']['kernel_h'], layer['params']['kernel_w'],
layer['params']['kernel_d'])
if (padding == 'custom'):
p_h, p_w, p_d = layer['params']['pad_h'], layer['params']['pad_w'],\
layer['params']['pad_d']
out[layerId +
'Pad'] = ZeroPadding3D(padding=(p_h, p_w, p_d))(*layer_in)
padding = 'valid'
layer_in = [out[layerId + 'Pad']]
# Note - figure out a permanent fix for padding calculation of layers
# in case padding is given in layer attributes
# if ('padding' in layer['params']):
# padding = layer['params']['padding']
out[layerId] = poolMap[(layer_type, pool_type)](
pool_size=kernel, strides=strides, padding=padding)
if tensor:
out[layerId] = out[layerId](*layer_in)
return out
# ********** Locally-connected Layers **********