本文整理匯總了Python中keras.layers.UpSampling3D方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.UpSampling3D方法的具體用法?Python layers.UpSampling3D怎麽用?Python layers.UpSampling3D使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類keras.layers
的用法示例。
在下文中一共展示了layers.UpSampling3D方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_keras_import
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import UpSampling3D [as 別名]
def test_keras_import(self):
# Upsample 1D
model = Sequential()
model.add(UpSampling1D(size=2, input_shape=(16, 1)))
model.build()
self.keras_param_test(model, 0, 2)
# Upsample 2D
model = Sequential()
model.add(UpSampling2D(size=(2, 2), input_shape=(16, 16, 1)))
model.build()
self.keras_param_test(model, 0, 3)
# Upsample 3D
model = Sequential()
model.add(UpSampling3D(size=(2, 2, 2), input_shape=(16, 16, 16, 1)))
model.build()
self.keras_param_test(model, 0, 4)
# ********** Pooling Layers **********
示例2: get_up_convolution
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import UpSampling3D [as 別名]
def get_up_convolution(n_filters, pool_size, kernel_size=(2, 2, 2), strides=(2, 2, 2),
deconvolution=False):
if deconvolution:
return Deconvolution3D(filters=n_filters, kernel_size=kernel_size,
strides=strides)
else:
return UpSampling3D(size=pool_size)
示例3: nn_architecture_seg_3d
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import UpSampling3D [as 別名]
def nn_architecture_seg_3d(input_shape, pool_size=(2, 2, 2), n_labels=1, initial_learning_rate=0.00001,
depth=3, n_base_filters=16, metrics=dice_coefficient, batch_normalization=True):
inputs = Input(input_shape)
current_layer = inputs
levels = list()
for layer_depth in range(depth):
layer1 = create_convolution_block(input_layer=current_layer, n_filters=n_base_filters * (2**layer_depth),
batch_normalization=batch_normalization)
layer2 = create_convolution_block(input_layer=layer1, n_filters=n_base_filters * (2**layer_depth) * 2,
batch_normalization=batch_normalization)
if layer_depth < depth - 1:
current_layer = MaxPooling3D(pool_size=pool_size)(layer2)
levels.append([layer1, layer2, current_layer])
else:
current_layer = layer2
levels.append([layer1, layer2])
for layer_depth in range(depth - 2, -1, -1):
up_convolution = UpSampling3D(size=pool_size)
concat = concatenate([up_convolution, levels[layer_depth][1]], axis=1)
current_layer = create_convolution_block(n_filters=levels[layer_depth][1]._keras_shape[1],
input_layer=concat, batch_normalization=batch_normalization)
current_layer = create_convolution_block(n_filters=levels[layer_depth][1]._keras_shape[1],
input_layer=current_layer,
batch_normalization=batch_normalization)
final_convolution = Conv3D(n_labels, (1, 1, 1))(current_layer)
act = Activation('sigmoid')(final_convolution)
model = Model(inputs=inputs, outputs=act)
if not isinstance(metrics, list):
metrics = [metrics]
model.compile(optimizer=Adam(lr=initial_learning_rate), loss=dice_coefficient_loss, metrics=metrics)
return model
示例4: model_simple_upsampling__reshape
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import UpSampling3D [as 別名]
def model_simple_upsampling__reshape(img_shape, class_n=None):
from keras.layers import Input, Dense, Convolution3D, MaxPooling3D, UpSampling3D, Reshape, Flatten
from keras.models import Sequential, Model
from keras.layers.core import Activation
from aitom.classify.deep.unsupervised.autoencoder.seg_util import conv_block
NUM_CHANNELS=1
input_shape = (None, img_shape[0], img_shape[1], img_shape[2], NUM_CHANNELS)
# use relu activation for hidden layer to guarantee non-negative outputs are passed to the max pooling layer. In such case, as long as the output layer is linear activation, the network can still accomodate negative image intendities, just matter of shift back using the bias term
input_img = Input(shape=input_shape[1:])
x = input_img
x = conv_block(x, 32, 3, 3, 3)
x = MaxPooling3D((2, 2, 2), border_mode='same')(x)
x = conv_block(x, 32, 3, 3, 3)
x = MaxPooling3D((2, 2, 2), border_mode='same')(x)
x = conv_block(x, 32, 3, 3, 3)
x = UpSampling3D((2, 2, 2))(x)
x = conv_block(x, 32, 3, 3, 3)
x = UpSampling3D((2, 2, 2))(x)
x = conv_block(x, 32, 3, 3, 3)
x = Convolution3D(class_n, 1, 1, 1, border_mode='same')(x)
x = Reshape((N.prod(img_shape), class_n))(x)
x = Activation('softmax')(x)
model = Model(input=input_img, output=x)
print('model layers:')
for l in model.layers: print (l.output_shape, l.name)
return model
示例5: create_up_sampling_module
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import UpSampling3D [as 別名]
def create_up_sampling_module(input_layer, n_filters, size=(2, 2, 2)):
up_sample = UpSampling3D(size=size)(input_layer)
convolution = create_convolution_block(up_sample, n_filters)
return convolution
示例6: test_keras_export
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import UpSampling3D [as 別名]
def test_keras_export(self):
tests = open(os.path.join(settings.BASE_DIR, 'tests', 'unit', 'keras_app',
'keras_export_test.json'), 'r')
response = json.load(tests)
tests.close()
net = yaml.safe_load(json.dumps(response['net']))
net = {'l0': net['Input'], 'l1': net['Input2'], 'l2': net['Input4'], 'l3': net['Upsample']}
# Conv 1D
net['l1']['connection']['output'].append('l3')
net['l3']['connection']['input'] = ['l1']
net['l3']['params']['layer_type'] = '1D'
inp = data(net['l1'], '', 'l1')['l1']
temp = upsample(net['l3'], [inp], 'l3')
model = Model(inp, temp['l3'])
self.assertEqual(model.layers[1].__class__.__name__, 'UpSampling1D')
# Conv 2D
net['l0']['connection']['output'].append('l0')
net['l3']['connection']['input'] = ['l0']
net['l3']['params']['layer_type'] = '2D'
inp = data(net['l0'], '', 'l0')['l0']
temp = upsample(net['l3'], [inp], 'l3')
model = Model(inp, temp['l3'])
self.assertEqual(model.layers[1].__class__.__name__, 'UpSampling2D')
# Conv 3D
net['l2']['connection']['output'].append('l3')
net['l3']['connection']['input'] = ['l2']
net['l3']['params']['layer_type'] = '3D'
inp = data(net['l2'], '', 'l2')['l2']
temp = upsample(net['l3'], [inp], 'l3')
model = Model(inp, temp['l3'])
self.assertEqual(model.layers[1].__class__.__name__, 'UpSampling3D')
示例7: auto_classifier_model
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import UpSampling3D [as 別名]
def auto_classifier_model(img_shape, encoding_dim=128, NUM_CHANNELS=1, num_of_class=2):
input_shape = (None, img_shape[0], img_shape[1], img_shape[2], NUM_CHANNELS)
mask_shape = (None, num_of_class)
# use relu activation for hidden layer to guarantee non-negative outputs are passed to the max pooling layer. In such case, as long as the output layer is linear activation, the network can still accomodate negative image intendities, just matter of shift back using the bias term
input_img = Input(shape=input_shape[1:])
mask = Input(shape=mask_shape[1:])
x = input_img
x = conv_block(x, 32, 3, 3, 3)
x = MaxPooling3D((2, 2, 2), padding ='same')(x)
x = conv_block(x, 32, 3, 3, 3)
x = MaxPooling3D((2, 2, 2), padding ='same')(x)
encoder_conv_shape = [_.value for _ in x.get_shape()] # x.get_shape() returns a list of tensorflow.python.framework.tensor_shape.Dimension objects
x = Flatten()(x)
encoded = Dense(encoding_dim, activation='relu', activity_regularizer=regularizers.l1(10e-5))(x)
encoder = Model(inputs=input_img, outputs=encoded)
x = BatchNormalization()(x)
x = Dense(encoding_dim, activation='relu', activity_regularizer=regularizers.l1(10e-5))(x)
x = Dense(128, activation = 'relu')(x)
x = Dense(num_of_class, activation = 'softmax')(x)
prob = x
# classifier output
classifier = Model(inputs=input_img, outputs=prob)
input_img_decoder = Input(shape=encoder.output_shape[1:])
x = input_img_decoder
x = Dense(np.prod(encoder_conv_shape[1:]), activation='relu')(x)
x = Reshape(encoder_conv_shape[1:])(x)
x = UpSampling3D((2, 2, 2))(x)
x = conv_block(x, 32, 3, 3, 3)
x = UpSampling3D((2, 2, 2))(x)
x = conv_block(x, 32, 3, 3, 3)
x = Convolution3D(1, (3, 3, 3), activation='linear', padding ='same')(x)
decoded = x
# autoencoder output
decoder = Model(inputs=input_img_decoder, outputs=decoded)
autoencoder = Sequential()
for l in encoder.layers:
autoencoder.add(l)
last = None
for l in decoder.layers:
last = l
autoencoder.add(l)
decoded = autoencoder(input_img)
auto_classifier = Model(inputs=input_img, outputs=[decoded, prob])
auto_classifier.summary()
return auto_classifier
示例8: _build
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import UpSampling3D [as 別名]
def _build(self):
# get parameters
proj = self.proj_params
proj_axis = axes_dict(self.config.axes)[proj.axis]
# define surface projection network (3D -> 2D)
inp = u = Input(self.config.unet_input_shape)
def conv_layers(u):
for _ in range(proj.n_conv_per_depth):
u = Conv3D(proj.n_filt, proj.kern, padding='same', activation='relu')(u)
return u
# down
for _ in range(proj.n_depth):
u = conv_layers(u)
u = MaxPooling3D(proj.pool)(u)
# middle
u = conv_layers(u)
# up
for _ in range(proj.n_depth):
u = UpSampling3D(proj.pool)(u)
u = conv_layers(u)
u = Conv3D(1, proj.kern, padding='same', activation='linear')(u)
# convert learned features along Z to surface probabilities
# (add 1 to proj_axis because of batch dimension in tensorflow)
u = Lambda(lambda x: softmax(x, axis=1+proj_axis))(u)
# multiply Z probabilities with Z values in input stack
u = Multiply()([inp, u])
# perform surface projection by summing over weighted Z values
u = Lambda(lambda x: K.sum(x, axis=1+proj_axis))(u)
model_projection = Model(inp, u)
# define denoising network (2D -> 2D)
# (remove projected axis from input_shape)
input_shape = list(self.config.unet_input_shape)
del input_shape[proj_axis]
model_denoising = nets.common_unet(
n_dim = self.config.n_dim-1,
n_channel_out = self.config.n_channel_out,
prob_out = self.config.probabilistic,
residual = self.config.unet_residual,
n_depth = self.config.unet_n_depth,
kern_size = self.config.unet_kern_size,
n_first = self.config.unet_n_first,
last_activation = self.config.unet_last_activation,
)(tuple(input_shape))
# chain models together
return Model(inp, model_denoising(model_projection(inp)))