當前位置: 首頁>>代碼示例>>Python>>正文


Python layers.UpSampling2D方法代碼示例

本文整理匯總了Python中keras.layers.UpSampling2D方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.UpSampling2D方法的具體用法?Python layers.UpSampling2D怎麽用?Python layers.UpSampling2D使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.layers的用法示例。


在下文中一共展示了layers.UpSampling2D方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: build_cae_model

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import UpSampling2D [as 別名]
def build_cae_model(height=32, width=32, channel=3):
    """
    build convolutional autoencoder model
    """
    input_img = Input(shape=(height, width, channel))

    # encoder
    net = Conv2D(16, (3, 3), activation='relu', padding='same')(input_img)
    net = MaxPooling2D((2, 2), padding='same')(net)
    net = Conv2D(8, (3, 3), activation='relu', padding='same')(net)
    net = MaxPooling2D((2, 2), padding='same')(net)
    net = Conv2D(4, (3, 3), activation='relu', padding='same')(net)
    encoded = MaxPooling2D((2, 2), padding='same', name='enc')(net)

    # decoder
    net = Conv2D(4, (3, 3), activation='relu', padding='same')(encoded)
    net = UpSampling2D((2, 2))(net)
    net = Conv2D(8, (3, 3), activation='relu', padding='same')(net)
    net = UpSampling2D((2, 2))(net)
    net = Conv2D(16, (3, 3), activation='relu', padding='same')(net)
    net = UpSampling2D((2, 2))(net)
    decoded = Conv2D(channel, (3, 3), activation='sigmoid', padding='same')(net)

    return Model(input_img, decoded) 
開發者ID:hiram64,項目名稱:ocsvm-anomaly-detection,代碼行數:26,代碼來源:model.py

示例2: g_block

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import UpSampling2D [as 別名]
def g_block(inp, fil, u = True):

    if u:
        out = UpSampling2D(interpolation = 'bilinear')(inp)
    else:
        out = Activation('linear')(inp)

    skip = Conv2D(fil, 1, padding = 'same', kernel_initializer = 'he_normal')(out)

    out = Conv2D(filters = fil, kernel_size = 3, padding = 'same', kernel_initializer = 'he_normal')(out)
    out = LeakyReLU(0.2)(out)

    out = Conv2D(filters = fil, kernel_size = 3, padding = 'same', kernel_initializer = 'he_normal')(out)
    out = LeakyReLU(0.2)(out)

    out = Conv2D(fil, 1, padding = 'same', kernel_initializer = 'he_normal')(out)

    out = add([out, skip])
    out = LeakyReLU(0.2)(out)

    return out 
開發者ID:manicman1999,項目名稱:Keras-BiGAN,代碼行數:23,代碼來源:bigan.py

示例3: yolo_main

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import UpSampling2D [as 別名]
def yolo_main(input, num_anchors, num_classes):

    darknet_network = Model(input, darknet(input))

    network, network_1 = last_layers(darknet_network.output, 512, num_anchors * (num_classes + 5), layer_name="last1")

    network = NetworkConv2D_BN_Leaky( input=network, channels=256, kernel_size=(1,1))
    network = UpSampling2D(2)(network)
    network = Concatenate()([network, darknet_network.layers[152].output])

    network, network_2 = last_layers(network,  256,  num_anchors * (num_classes + 5), layer_name="last2")

    network = NetworkConv2D_BN_Leaky(input=network, channels=128, kernel_size=(1, 1))
    network = UpSampling2D(2)(network)
    network = Concatenate()([network, darknet_network.layers[92].output])

    network, network_3 = last_layers(network, 128, num_anchors * (num_classes + 5), layer_name="last3")

    return Model(input, [network_1, network_2, network_3]) 
開發者ID:OlafenwaMoses,項目名稱:ImageAI,代碼行數:21,代碼來源:models.py

示例4: build_model

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import UpSampling2D [as 別名]
def build_model():
    model = Sequential()
    model.add(InputLayer(input_shape=(None, None, 1)))
    model.add(Conv2D(8, (3, 3), activation='relu', padding='same', strides=2))
    model.add(Conv2D(8, (3, 3), activation='relu', padding='same'))
    model.add(Conv2D(16, (3, 3), activation='relu', padding='same'))
    model.add(Conv2D(16, (3, 3), activation='relu', padding='same', strides=2))
    model.add(Conv2D(32, (3, 3), activation='relu', padding='same'))
    model.add(Conv2D(32, (3, 3), activation='relu', padding='same', strides=2))
    model.add(UpSampling2D((2, 2)))
    model.add(Conv2D(32, (3, 3), activation='relu', padding='same'))
    model.add(UpSampling2D((2, 2)))
    model.add(Conv2D(16, (3, 3), activation='relu', padding='same'))
    model.add(UpSampling2D((2, 2)))
    model.add(Conv2D(2, (3, 3), activation='tanh', padding='same'))
    # model.compile(optimizer='rmsprop', loss='mse')
    model.compile(optimizer='adam', loss='mse')
    return model


#訓練數據 
開發者ID:vipstone,項目名稱:faceai,代碼行數:23,代碼來源:colorize.py

示例5: convolutional_autoencoder

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import UpSampling2D [as 別名]
def convolutional_autoencoder():

    input_shape=(28,28,1)
    n_channels = input_shape[-1]
    model = Sequential()
    model.add(Conv2D(32, (3,3), activation='relu', padding='same', input_shape=input_shape))
    model.add(MaxPool2D(padding='same'))
    model.add(Conv2D(16, (3,3), activation='relu', padding='same'))
    model.add(MaxPool2D(padding='same'))
    model.add(Conv2D(8, (3,3), activation='relu', padding='same'))
    model.add(UpSampling2D())
    model.add(Conv2D(16, (3,3), activation='relu', padding='same'))
    model.add(UpSampling2D())
    model.add(Conv2D(32, (3,3), activation='relu', padding='same'))
    model.add(Conv2D(n_channels, (3,3), activation='sigmoid', padding='same'))
    return model 
開發者ID:otenim,項目名稱:AnomalyDetectionUsingAutoencoder,代碼行數:18,代碼來源:models.py

示例6: test_tiny_conv_upsample_random

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import UpSampling2D [as 別名]
def test_tiny_conv_upsample_random(self):
        np.random.seed(1988)
        input_dim = 10
        input_shape = (input_dim, input_dim, 1)
        num_kernels = 3
        kernel_height = 5
        kernel_width = 5

        # Define a model
        model = Sequential()
        model.add(
            Conv2D(
                input_shape=input_shape,
                filters=num_kernels,
                kernel_size=(kernel_height, kernel_width),
            )
        )
        model.add(UpSampling2D(size=2))

        # Set some random weights
        model.set_weights([np.random.rand(*w.shape) for w in model.get_weights()])

        # Test the keras model
        self._test_model(model) 
開發者ID:apple,項目名稱:coremltools,代碼行數:26,代碼來源:test_keras2_numeric.py

示例7: test_upsample_layer_params

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import UpSampling2D [as 別名]
def test_upsample_layer_params(self):
        options = dict(size=[(2, 2), (3, 3), (4, 4), (5, 5)])

        np.random.seed(1988)
        input_dim = 10
        input_shape = (input_dim, input_dim, 1)
        X = np.random.rand(1, *input_shape)

        # Define a function that tests a model
        def build_model(x):
            kwargs = dict(zip(options.keys(), x))
            model = Sequential()
            model.add(Conv2D(filters=5, kernel_size=(7, 7), input_shape=input_shape))
            model.add(UpSampling2D(**kwargs))
            return x, model

        # Iterate through all combinations
        product = itertools.product(*options.values())
        args = [build_model(p) for p in product]

        # Test the cases
        print("Testing a total of %s cases. This could take a while" % len(args))
        for param, model in args:
            self._run_test(model, param) 
開發者ID:apple,項目名稱:coremltools,代碼行數:26,代碼來源:test_keras2_numeric.py

示例8: get_autoencoder_model

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import UpSampling2D [as 別名]
def get_autoencoder_model(input_shape, labels=10):
    """
    An autoencoder for MNIST to be used in the DAL implementation.
    """

    image = Input(shape=input_shape)
    encoder = Conv2D(32, (3, 3), activation='relu', padding='same')(image)
    encoder = MaxPooling2D((2, 2), padding='same')(encoder)
    encoder = Conv2D(8, (3, 3), activation='relu', padding='same')(encoder)
    encoder = Conv2D(4, (3, 3), activation='relu', padding='same')(encoder)
    encoder = MaxPooling2D((2, 2), padding='same')(encoder)

    decoder = UpSampling2D((2, 2), name='embedding')(encoder)
    decoder = Conv2D(4, (3, 3), activation='relu', padding='same')(decoder)
    decoder = Conv2D(8, (3, 3), activation='relu', padding='same')(decoder)
    decoder = UpSampling2D((2, 2))(decoder)
    decoder = Conv2D(32, (3, 3), activation='relu', padding='same')(decoder)
    decoder = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(decoder)

    autoencoder = Model(image, decoder)
    return autoencoder 
開發者ID:dsgissin,項目名稱:DiscriminativeActiveLearning,代碼行數:23,代碼來源:models.py

示例9: _up_block

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import UpSampling2D [as 別名]
def _up_block(block,mrge, nb_filters):
    up = merge([Convolution2D(2*nb_filters, 2, 2, border_mode='same')(UpSampling2D(size=(2, 2))(block)), mrge], mode='concat', concat_axis=1)
    # conv = Convolution2D(4*nb_filters, 1, 1, activation='relu', border_mode='same')(up)
    conv = Convolution2D(nb_filters, 3, 3, activation='relu', border_mode='same')(up)
    conv = Convolution2D(nb_filters, 3, 3, activation='relu', border_mode='same')(conv)

    # conv = Convolution2D(4*nb_filters, 1, 1, activation='relu', border_mode='same')(conv)
    # conv = Convolution2D(nb_filters, 3, 3, activation='relu', border_mode='same')(conv)
    # conv = Convolution2D(nb_filters, 1, 1, activation='relu', border_mode='same')(conv)
    
    # conv = Convolution2D(4*nb_filters, 1, 1, activation='relu', border_mode='same')(conv)
    # conv = Convolution2D(nb_filters, 3, 3, activation='relu', border_mode='same')(conv)
    # conv = Convolution2D(nb_filters, 1, 1, activation='relu', border_mode='same')(conv)

    return conv


# http://arxiv.org/pdf/1512.03385v1.pdf
# 50 Layer resnet 
開發者ID:yihui-he,項目名稱:u-net,代碼行數:21,代碼來源:train_res.py

示例10: Upsample2D_block

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import UpSampling2D [as 別名]
def Upsample2D_block(filters, stage, kernel_size=(3,3), upsample_rate=(2,2),
                     use_batchnorm=False, skip=None):

    def layer(input_tensor):

        conv_name, bn_name, relu_name, up_name = handle_block_names(stage)

        x = UpSampling2D(size=upsample_rate, name=up_name)(input_tensor)

        if skip is not None:
            x = Concatenate()([x, skip])

        x = ConvRelu(filters, kernel_size, use_batchnorm=use_batchnorm,
                     conv_name=conv_name + '1', bn_name=bn_name + '1', relu_name=relu_name + '1')(x)

        x = ConvRelu(filters, kernel_size, use_batchnorm=use_batchnorm,
                     conv_name=conv_name + '2', bn_name=bn_name + '2', relu_name=relu_name + '2')(x)

        return x
    return layer 
開發者ID:SpaceNetChallenge,項目名稱:SpaceNet_Off_Nadir_Solutions,代碼行數:22,代碼來源:blocks.py

示例11: Conv2DUpsample

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import UpSampling2D [as 別名]
def Conv2DUpsample(filters,
                   upsample_rate,
                   kernel_size=(3,3),
                   up_name='up',
                   conv_name='conv',
                   **kwargs):

    def layer(input_tensor):
        x = UpSampling2D(upsample_rate, name=up_name)(input_tensor)
        x = Conv2D(filters,
                   kernel_size,
                   padding='same',
                   name=conv_name,
                   **kwargs)(x)
        return x
    return layer 
開發者ID:SpaceNetChallenge,項目名稱:SpaceNet_Off_Nadir_Solutions,代碼行數:18,代碼來源:blocks.py

示例12: inception_resnet_v2_fpn

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import UpSampling2D [as 別名]
def inception_resnet_v2_fpn(input_shape, channels=1, activation="sigmoid"):
    inceresv2 = InceptionResNetV2Same(input_shape=input_shape, include_top=False)
    conv1, conv2, conv3, conv4, conv5 = inceresv2.output

    P1, P2, P3, P4, P5 = create_pyramid_features(conv1, conv2, conv3, conv4, conv5)
    x = concatenate(
        [
            prediction_fpn_block(P5, "P5", (8, 8)),
            prediction_fpn_block(P4, "P4", (4, 4)),
            prediction_fpn_block(P3, "P3", (2, 2)),
            prediction_fpn_block(P2, "P2"),
        ]
    )
    x = conv_bn_relu(x, 256, 3, (1, 1), name="aggregation")
    x = decoder_block_no_bn(x, 128, conv1, 'up4')
    x = UpSampling2D()(x)
    x = conv_relu(x, 64, 3, (1, 1), name="up5_conv1")
    x = conv_relu(x, 64, 3, (1, 1), name="up5_conv2")
    if activation == 'softmax':
        name = 'mask_softmax'
        x = Conv2D(channels, (1, 1), activation=activation, name=name)(x)
    else:
        x = Conv2D(channels, (1, 1), activation=activation, name="mask")(x)
    model = Model(inceresv2.input, x)
    return model 
開發者ID:selimsef,項目名稱:dsb2018_topcoders,代碼行數:27,代碼來源:unets.py

示例13: mnist_generator

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import UpSampling2D [as 別名]
def mnist_generator(input_shape=(28, 28, 1), scale=1/4):
    x0 = Input(input_shape)
    x = Conv2D(int(128*scale), (3, 3), strides=(2, 2), padding='same')(x0)
    x = InstanceNormalization()(x)
    x = LeakyReLU()(x)
    x = Conv2D(int(64*scale), (3, 3), strides=(2, 2), padding='same')(x)
    x = InstanceNormalization()(x)
    x = LeakyReLU()(x)
    x = residual_block(x, scale, num_id=2)
    x = residual_block(x, scale*2, num_id=3)
    x = UpSampling2D(size=(2, 2))(x)
    x = Conv2D(int(1024*scale), (1, 1))(x)
    x = InstanceNormalization()(x)
    x = LeakyReLU()(x)
    x = UpSampling2D(size=(2, 2))(x)
    x = Conv2D(1, (1, 1), activation='sigmoid')(x)
    return Model(x0, x) 
開發者ID:alecGraves,項目名稱:cyclegan_keras,代碼行數:19,代碼來源:models.py

示例14: model

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import UpSampling2D [as 別名]
def model():
    model = VGG16(include_top=False, input_shape=(128, 128, 3))
    x = model.output

    y = x
    x = Flatten()(x)
    x = Dense(1024, activation='relu')(x)
    x = Dropout(0.5)(x)
    x = Dense(1024, activation='relu')(x)
    x = Dropout(0.5)(x)
    probability = Dense(5, activation='sigmoid', name='probabilistic_output')(x)

    y = UpSampling2D((3, 3))(y)
    y = Activation('relu')(y)
    y = Conv2D(1, (3, 3), activation='linear')(y)
    position = Reshape(target_shape=(10, 10), name='positional_output')(y)
    model = Model(input=model.input, outputs=[probability, position])
    return model 
開發者ID:MahmudulAlam,項目名稱:Unified-Gesture-and-Fingertip-Detection,代碼行數:20,代碼來源:network.py

示例15: apn_module

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import UpSampling2D [as 別名]
def apn_module(self, x):

        def right(x):
            x = layers.AveragePooling2D()(x)
            x = layers.Conv2D(self.classes, kernel_size=1, padding='same')(x)
            x = layers.BatchNormalization()(x)
            x = layers.Activation('relu')(x)
            x = layers.UpSampling2D(interpolation='bilinear')(x)
            return x

        def conv(x, filters, kernel_size, stride):
            x = layers.Conv2D(filters, kernel_size=kernel_size, strides=(stride, stride), padding='same')(x)
            x = layers.BatchNormalization()(x)
            x = layers.Activation('relu')(x)
            return x

        x_7 = conv(x, int(x.shape[-1]), 7, stride=2)
        x_5 = conv(x_7, int(x.shape[-1]), 5, stride=2)
        x_3 = conv(x_5, int(x.shape[-1]), 3, stride=2)

        x_3_1 = conv(x_3, self.classes, 3, stride=1)
        x_3_1_up = layers.UpSampling2D(interpolation='bilinear')(x_3_1)
        x_5_1 = conv(x_5, self.classes, 5, stride=1)
        x_3_5 = layers.add([x_5_1, x_3_1_up])
        x_3_5_up = layers.UpSampling2D(interpolation='bilinear')(x_3_5)
        x_7_1 = conv(x_7, self.classes, 3, stride=1)
        x_3_5_7 = layers.add([x_7_1, x_3_5_up])
        x_3_5_7_up = layers.UpSampling2D(interpolation='bilinear')(x_3_5_7)

        x_middle = conv(x, self.classes, 1, stride=1)
        x_middle = layers.multiply([x_3_5_7_up, x_middle])

        x_right = right(x)
        x_middle = layers.add([x_middle, x_right])
        return x_middle 
開發者ID:JACKYLUO1991,項目名稱:Face-skin-hair-segmentaiton-and-skin-color-evaluation,代碼行數:37,代碼來源:lednet.py


注:本文中的keras.layers.UpSampling2D方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。