本文整理匯總了Python中keras.layers.UpSampling2D方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.UpSampling2D方法的具體用法?Python layers.UpSampling2D怎麽用?Python layers.UpSampling2D使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類keras.layers
的用法示例。
在下文中一共展示了layers.UpSampling2D方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: build_cae_model
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import UpSampling2D [as 別名]
def build_cae_model(height=32, width=32, channel=3):
"""
build convolutional autoencoder model
"""
input_img = Input(shape=(height, width, channel))
# encoder
net = Conv2D(16, (3, 3), activation='relu', padding='same')(input_img)
net = MaxPooling2D((2, 2), padding='same')(net)
net = Conv2D(8, (3, 3), activation='relu', padding='same')(net)
net = MaxPooling2D((2, 2), padding='same')(net)
net = Conv2D(4, (3, 3), activation='relu', padding='same')(net)
encoded = MaxPooling2D((2, 2), padding='same', name='enc')(net)
# decoder
net = Conv2D(4, (3, 3), activation='relu', padding='same')(encoded)
net = UpSampling2D((2, 2))(net)
net = Conv2D(8, (3, 3), activation='relu', padding='same')(net)
net = UpSampling2D((2, 2))(net)
net = Conv2D(16, (3, 3), activation='relu', padding='same')(net)
net = UpSampling2D((2, 2))(net)
decoded = Conv2D(channel, (3, 3), activation='sigmoid', padding='same')(net)
return Model(input_img, decoded)
示例2: g_block
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import UpSampling2D [as 別名]
def g_block(inp, fil, u = True):
if u:
out = UpSampling2D(interpolation = 'bilinear')(inp)
else:
out = Activation('linear')(inp)
skip = Conv2D(fil, 1, padding = 'same', kernel_initializer = 'he_normal')(out)
out = Conv2D(filters = fil, kernel_size = 3, padding = 'same', kernel_initializer = 'he_normal')(out)
out = LeakyReLU(0.2)(out)
out = Conv2D(filters = fil, kernel_size = 3, padding = 'same', kernel_initializer = 'he_normal')(out)
out = LeakyReLU(0.2)(out)
out = Conv2D(fil, 1, padding = 'same', kernel_initializer = 'he_normal')(out)
out = add([out, skip])
out = LeakyReLU(0.2)(out)
return out
示例3: yolo_main
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import UpSampling2D [as 別名]
def yolo_main(input, num_anchors, num_classes):
darknet_network = Model(input, darknet(input))
network, network_1 = last_layers(darknet_network.output, 512, num_anchors * (num_classes + 5), layer_name="last1")
network = NetworkConv2D_BN_Leaky( input=network, channels=256, kernel_size=(1,1))
network = UpSampling2D(2)(network)
network = Concatenate()([network, darknet_network.layers[152].output])
network, network_2 = last_layers(network, 256, num_anchors * (num_classes + 5), layer_name="last2")
network = NetworkConv2D_BN_Leaky(input=network, channels=128, kernel_size=(1, 1))
network = UpSampling2D(2)(network)
network = Concatenate()([network, darknet_network.layers[92].output])
network, network_3 = last_layers(network, 128, num_anchors * (num_classes + 5), layer_name="last3")
return Model(input, [network_1, network_2, network_3])
示例4: build_model
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import UpSampling2D [as 別名]
def build_model():
model = Sequential()
model.add(InputLayer(input_shape=(None, None, 1)))
model.add(Conv2D(8, (3, 3), activation='relu', padding='same', strides=2))
model.add(Conv2D(8, (3, 3), activation='relu', padding='same'))
model.add(Conv2D(16, (3, 3), activation='relu', padding='same'))
model.add(Conv2D(16, (3, 3), activation='relu', padding='same', strides=2))
model.add(Conv2D(32, (3, 3), activation='relu', padding='same'))
model.add(Conv2D(32, (3, 3), activation='relu', padding='same', strides=2))
model.add(UpSampling2D((2, 2)))
model.add(Conv2D(32, (3, 3), activation='relu', padding='same'))
model.add(UpSampling2D((2, 2)))
model.add(Conv2D(16, (3, 3), activation='relu', padding='same'))
model.add(UpSampling2D((2, 2)))
model.add(Conv2D(2, (3, 3), activation='tanh', padding='same'))
# model.compile(optimizer='rmsprop', loss='mse')
model.compile(optimizer='adam', loss='mse')
return model
#訓練數據
示例5: convolutional_autoencoder
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import UpSampling2D [as 別名]
def convolutional_autoencoder():
input_shape=(28,28,1)
n_channels = input_shape[-1]
model = Sequential()
model.add(Conv2D(32, (3,3), activation='relu', padding='same', input_shape=input_shape))
model.add(MaxPool2D(padding='same'))
model.add(Conv2D(16, (3,3), activation='relu', padding='same'))
model.add(MaxPool2D(padding='same'))
model.add(Conv2D(8, (3,3), activation='relu', padding='same'))
model.add(UpSampling2D())
model.add(Conv2D(16, (3,3), activation='relu', padding='same'))
model.add(UpSampling2D())
model.add(Conv2D(32, (3,3), activation='relu', padding='same'))
model.add(Conv2D(n_channels, (3,3), activation='sigmoid', padding='same'))
return model
示例6: test_tiny_conv_upsample_random
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import UpSampling2D [as 別名]
def test_tiny_conv_upsample_random(self):
np.random.seed(1988)
input_dim = 10
input_shape = (input_dim, input_dim, 1)
num_kernels = 3
kernel_height = 5
kernel_width = 5
# Define a model
model = Sequential()
model.add(
Conv2D(
input_shape=input_shape,
filters=num_kernels,
kernel_size=(kernel_height, kernel_width),
)
)
model.add(UpSampling2D(size=2))
# Set some random weights
model.set_weights([np.random.rand(*w.shape) for w in model.get_weights()])
# Test the keras model
self._test_model(model)
示例7: test_upsample_layer_params
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import UpSampling2D [as 別名]
def test_upsample_layer_params(self):
options = dict(size=[(2, 2), (3, 3), (4, 4), (5, 5)])
np.random.seed(1988)
input_dim = 10
input_shape = (input_dim, input_dim, 1)
X = np.random.rand(1, *input_shape)
# Define a function that tests a model
def build_model(x):
kwargs = dict(zip(options.keys(), x))
model = Sequential()
model.add(Conv2D(filters=5, kernel_size=(7, 7), input_shape=input_shape))
model.add(UpSampling2D(**kwargs))
return x, model
# Iterate through all combinations
product = itertools.product(*options.values())
args = [build_model(p) for p in product]
# Test the cases
print("Testing a total of %s cases. This could take a while" % len(args))
for param, model in args:
self._run_test(model, param)
示例8: get_autoencoder_model
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import UpSampling2D [as 別名]
def get_autoencoder_model(input_shape, labels=10):
"""
An autoencoder for MNIST to be used in the DAL implementation.
"""
image = Input(shape=input_shape)
encoder = Conv2D(32, (3, 3), activation='relu', padding='same')(image)
encoder = MaxPooling2D((2, 2), padding='same')(encoder)
encoder = Conv2D(8, (3, 3), activation='relu', padding='same')(encoder)
encoder = Conv2D(4, (3, 3), activation='relu', padding='same')(encoder)
encoder = MaxPooling2D((2, 2), padding='same')(encoder)
decoder = UpSampling2D((2, 2), name='embedding')(encoder)
decoder = Conv2D(4, (3, 3), activation='relu', padding='same')(decoder)
decoder = Conv2D(8, (3, 3), activation='relu', padding='same')(decoder)
decoder = UpSampling2D((2, 2))(decoder)
decoder = Conv2D(32, (3, 3), activation='relu', padding='same')(decoder)
decoder = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(decoder)
autoencoder = Model(image, decoder)
return autoencoder
示例9: _up_block
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import UpSampling2D [as 別名]
def _up_block(block,mrge, nb_filters):
up = merge([Convolution2D(2*nb_filters, 2, 2, border_mode='same')(UpSampling2D(size=(2, 2))(block)), mrge], mode='concat', concat_axis=1)
# conv = Convolution2D(4*nb_filters, 1, 1, activation='relu', border_mode='same')(up)
conv = Convolution2D(nb_filters, 3, 3, activation='relu', border_mode='same')(up)
conv = Convolution2D(nb_filters, 3, 3, activation='relu', border_mode='same')(conv)
# conv = Convolution2D(4*nb_filters, 1, 1, activation='relu', border_mode='same')(conv)
# conv = Convolution2D(nb_filters, 3, 3, activation='relu', border_mode='same')(conv)
# conv = Convolution2D(nb_filters, 1, 1, activation='relu', border_mode='same')(conv)
# conv = Convolution2D(4*nb_filters, 1, 1, activation='relu', border_mode='same')(conv)
# conv = Convolution2D(nb_filters, 3, 3, activation='relu', border_mode='same')(conv)
# conv = Convolution2D(nb_filters, 1, 1, activation='relu', border_mode='same')(conv)
return conv
# http://arxiv.org/pdf/1512.03385v1.pdf
# 50 Layer resnet
示例10: Upsample2D_block
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import UpSampling2D [as 別名]
def Upsample2D_block(filters, stage, kernel_size=(3,3), upsample_rate=(2,2),
use_batchnorm=False, skip=None):
def layer(input_tensor):
conv_name, bn_name, relu_name, up_name = handle_block_names(stage)
x = UpSampling2D(size=upsample_rate, name=up_name)(input_tensor)
if skip is not None:
x = Concatenate()([x, skip])
x = ConvRelu(filters, kernel_size, use_batchnorm=use_batchnorm,
conv_name=conv_name + '1', bn_name=bn_name + '1', relu_name=relu_name + '1')(x)
x = ConvRelu(filters, kernel_size, use_batchnorm=use_batchnorm,
conv_name=conv_name + '2', bn_name=bn_name + '2', relu_name=relu_name + '2')(x)
return x
return layer
示例11: Conv2DUpsample
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import UpSampling2D [as 別名]
def Conv2DUpsample(filters,
upsample_rate,
kernel_size=(3,3),
up_name='up',
conv_name='conv',
**kwargs):
def layer(input_tensor):
x = UpSampling2D(upsample_rate, name=up_name)(input_tensor)
x = Conv2D(filters,
kernel_size,
padding='same',
name=conv_name,
**kwargs)(x)
return x
return layer
示例12: inception_resnet_v2_fpn
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import UpSampling2D [as 別名]
def inception_resnet_v2_fpn(input_shape, channels=1, activation="sigmoid"):
inceresv2 = InceptionResNetV2Same(input_shape=input_shape, include_top=False)
conv1, conv2, conv3, conv4, conv5 = inceresv2.output
P1, P2, P3, P4, P5 = create_pyramid_features(conv1, conv2, conv3, conv4, conv5)
x = concatenate(
[
prediction_fpn_block(P5, "P5", (8, 8)),
prediction_fpn_block(P4, "P4", (4, 4)),
prediction_fpn_block(P3, "P3", (2, 2)),
prediction_fpn_block(P2, "P2"),
]
)
x = conv_bn_relu(x, 256, 3, (1, 1), name="aggregation")
x = decoder_block_no_bn(x, 128, conv1, 'up4')
x = UpSampling2D()(x)
x = conv_relu(x, 64, 3, (1, 1), name="up5_conv1")
x = conv_relu(x, 64, 3, (1, 1), name="up5_conv2")
if activation == 'softmax':
name = 'mask_softmax'
x = Conv2D(channels, (1, 1), activation=activation, name=name)(x)
else:
x = Conv2D(channels, (1, 1), activation=activation, name="mask")(x)
model = Model(inceresv2.input, x)
return model
示例13: mnist_generator
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import UpSampling2D [as 別名]
def mnist_generator(input_shape=(28, 28, 1), scale=1/4):
x0 = Input(input_shape)
x = Conv2D(int(128*scale), (3, 3), strides=(2, 2), padding='same')(x0)
x = InstanceNormalization()(x)
x = LeakyReLU()(x)
x = Conv2D(int(64*scale), (3, 3), strides=(2, 2), padding='same')(x)
x = InstanceNormalization()(x)
x = LeakyReLU()(x)
x = residual_block(x, scale, num_id=2)
x = residual_block(x, scale*2, num_id=3)
x = UpSampling2D(size=(2, 2))(x)
x = Conv2D(int(1024*scale), (1, 1))(x)
x = InstanceNormalization()(x)
x = LeakyReLU()(x)
x = UpSampling2D(size=(2, 2))(x)
x = Conv2D(1, (1, 1), activation='sigmoid')(x)
return Model(x0, x)
示例14: model
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import UpSampling2D [as 別名]
def model():
model = VGG16(include_top=False, input_shape=(128, 128, 3))
x = model.output
y = x
x = Flatten()(x)
x = Dense(1024, activation='relu')(x)
x = Dropout(0.5)(x)
x = Dense(1024, activation='relu')(x)
x = Dropout(0.5)(x)
probability = Dense(5, activation='sigmoid', name='probabilistic_output')(x)
y = UpSampling2D((3, 3))(y)
y = Activation('relu')(y)
y = Conv2D(1, (3, 3), activation='linear')(y)
position = Reshape(target_shape=(10, 10), name='positional_output')(y)
model = Model(input=model.input, outputs=[probability, position])
return model
示例15: apn_module
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import UpSampling2D [as 別名]
def apn_module(self, x):
def right(x):
x = layers.AveragePooling2D()(x)
x = layers.Conv2D(self.classes, kernel_size=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.UpSampling2D(interpolation='bilinear')(x)
return x
def conv(x, filters, kernel_size, stride):
x = layers.Conv2D(filters, kernel_size=kernel_size, strides=(stride, stride), padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
return x
x_7 = conv(x, int(x.shape[-1]), 7, stride=2)
x_5 = conv(x_7, int(x.shape[-1]), 5, stride=2)
x_3 = conv(x_5, int(x.shape[-1]), 3, stride=2)
x_3_1 = conv(x_3, self.classes, 3, stride=1)
x_3_1_up = layers.UpSampling2D(interpolation='bilinear')(x_3_1)
x_5_1 = conv(x_5, self.classes, 5, stride=1)
x_3_5 = layers.add([x_5_1, x_3_1_up])
x_3_5_up = layers.UpSampling2D(interpolation='bilinear')(x_3_5)
x_7_1 = conv(x_7, self.classes, 3, stride=1)
x_3_5_7 = layers.add([x_7_1, x_3_5_up])
x_3_5_7_up = layers.UpSampling2D(interpolation='bilinear')(x_3_5_7)
x_middle = conv(x, self.classes, 1, stride=1)
x_middle = layers.multiply([x_3_5_7_up, x_middle])
x_right = right(x)
x_middle = layers.add([x_middle, x_right])
return x_middle
開發者ID:JACKYLUO1991,項目名稱:Face-skin-hair-segmentaiton-and-skin-color-evaluation,代碼行數:37,代碼來源:lednet.py