當前位置: 首頁>>代碼示例>>Python>>正文


Python layers.TimeDistributed方法代碼示例

本文整理匯總了Python中keras.layers.TimeDistributed方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.TimeDistributed方法的具體用法?Python layers.TimeDistributed怎麽用?Python layers.TimeDistributed使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.layers的用法示例。


在下文中一共展示了layers.TimeDistributed方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: create_model

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import TimeDistributed [as 別名]
def create_model():
    inputs = Input(shape=(length,), dtype='int32', name='inputs')
    embedding_1 = Embedding(len(vocab), EMBED_DIM, input_length=length, mask_zero=True)(inputs)
    bilstm = Bidirectional(LSTM(EMBED_DIM // 2, return_sequences=True))(embedding_1)
    bilstm_dropout = Dropout(DROPOUT_RATE)(bilstm)
    embedding_2 = Embedding(len(vocab), EMBED_DIM, input_length=length)(inputs)
    con = Conv1D(filters=FILTERS, kernel_size=2 * HALF_WIN_SIZE + 1, padding='same')(embedding_2)
    con_d = Dropout(DROPOUT_RATE)(con)
    dense_con = TimeDistributed(Dense(DENSE_DIM))(con_d)
    rnn_cnn = concatenate([bilstm_dropout, dense_con], axis=2)
    dense = TimeDistributed(Dense(len(chunk_tags)))(rnn_cnn)
    crf = CRF(len(chunk_tags), sparse_target=True)
    crf_output = crf(dense)
    model = Model(input=[inputs], output=[crf_output])
    model.compile(loss=crf.loss_function, optimizer=Adam(), metrics=[crf.accuracy])
    return model 
開發者ID:jtyoui,項目名稱:Jtyoui,代碼行數:18,代碼來源:cnn_rnn_crf.py

示例2: get_audio_model

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import TimeDistributed [as 別名]
def get_audio_model(self):

		# Modality specific hyperparameters
		self.epochs = 100
		self.batch_size = 50

		# Modality specific parameters
		self.embedding_dim = self.train_x.shape[2]

		print("Creating Model...")
		
		inputs = Input(shape=(self.sequence_length, self.embedding_dim), dtype='float32')
		masked = Masking(mask_value =0)(inputs)
		lstm = Bidirectional(LSTM(300, activation='tanh', return_sequences = True, dropout=0.4))(masked)
		lstm = Bidirectional(LSTM(300, activation='tanh', return_sequences = True, dropout=0.4), name="utter")(lstm)
		output = TimeDistributed(Dense(self.classes,activation='softmax'))(lstm)

		model = Model(inputs, output)
		return model 
開發者ID:declare-lab,項目名稱:MELD,代碼行數:21,代碼來源:baseline.py

示例3: get_bimodal_model

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import TimeDistributed [as 別名]
def get_bimodal_model(self):

		# Modality specific hyperparameters
		self.epochs = 100
		self.batch_size = 10

		# Modality specific parameters
		self.embedding_dim = self.train_x.shape[2]

		print("Creating Model...")
		
		inputs = Input(shape=(self.sequence_length, self.embedding_dim), dtype='float32')
		masked = Masking(mask_value =0)(inputs)
		lstm = Bidirectional(LSTM(300, activation='tanh', return_sequences = True, dropout=0.4), name="utter")(masked)
		output = TimeDistributed(Dense(self.classes,activation='softmax'))(lstm)

		model = Model(inputs, output)
		return model 
開發者ID:declare-lab,項目名稱:MELD,代碼行數:20,代碼來源:baseline.py

示例4: classifier

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import TimeDistributed [as 別名]
def classifier(base_layers, input_rois, num_rois, nb_classes = 21, trainable=False):

    # compile times on theano tend to be very high, so we use smaller ROI pooling regions to workaround

    if K.backend() == 'tensorflow':
        pooling_regions = 7
        input_shape = (num_rois,7,7,512)
    elif K.backend() == 'theano':
        pooling_regions = 7
        input_shape = (num_rois,512,7,7)

    out_roi_pool = RoiPoolingConv(pooling_regions, num_rois)([base_layers, input_rois])

    out = TimeDistributed(Flatten(name='flatten'))(out_roi_pool)
    out = TimeDistributed(Dense(4096, activation='relu', name='fc1'))(out)
    out = TimeDistributed(Dropout(0.5))(out)
    out = TimeDistributed(Dense(4096, activation='relu', name='fc2'))(out)
    out = TimeDistributed(Dropout(0.5))(out)

    out_class = TimeDistributed(Dense(nb_classes, activation='softmax', kernel_initializer='zero'), name='dense_class_{}'.format(nb_classes))(out)
    # note: no regression target for bg class
    out_regr = TimeDistributed(Dense(4 * (nb_classes-1), activation='linear', kernel_initializer='zero'), name='dense_regress_{}'.format(nb_classes))(out)

    return [out_class, out_regr] 
開發者ID:kbardool,項目名稱:keras-frcnn,代碼行數:26,代碼來源:vgg.py

示例5: __build_model

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import TimeDistributed [as 別名]
def __build_model(self):
        model = Sequential()

        embedding_layer = Embedding(input_dim=len(self.vocab) + 1,
                                    output_dim=self.embedding_dim,
                                    weights=[self.embedding_mat],
                                    trainable=False)
        model.add(embedding_layer)

        bilstm_layer = Bidirectional(LSTM(units=256, return_sequences=True))
        model.add(bilstm_layer)

        model.add(TimeDistributed(Dense(256, activation="relu")))

        crf_layer = CRF(units=len(self.tags), sparse_target=True)
        model.add(crf_layer)

        model.compile(optimizer="adam", loss=crf_loss, metrics=[crf_viterbi_accuracy])
        model.summary()

        return model 
開發者ID:fordai,項目名稱:CCKS2019-Chinese-Clinical-NER,代碼行數:23,代碼來源:model.py

示例6: classifier

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import TimeDistributed [as 別名]
def classifier(base_layers, input_rois, num_rois, nb_classes=21, trainable=False):

    # compile times on theano tend to be very high, so we use smaller ROI pooling regions to workaround

    if K.backend() == 'tensorflow':
        pooling_regions = 14
        # Changed the input shape to 1088 from 1024 because of nn_base's output being 1088. Not sure if this is correct
        input_shape = (num_rois, 14, 14, 1088)
    elif K.backend() == 'theano':
        pooling_regions = 7
        input_shape = (num_rois, 1024, 7, 7)

    out_roi_pool = RoiPoolingConv(pooling_regions, num_rois)([base_layers, input_rois])
    out = classifier_layers(out_roi_pool, input_shape=input_shape, trainable=True)

    out = TimeDistributed(Flatten())(out)

    out_class = TimeDistributed(Dense(nb_classes, activation='softmax', kernel_initializer='zero'), name='dense_class_{}'.format(nb_classes))(out)
    # note: no regression target for bg class
    out_regr = TimeDistributed(Dense(4 * (nb_classes-1), activation='linear', kernel_initializer='zero'), name='dense_regress_{}'.format(nb_classes))(out)
    return [out_class, out_regr] 
開發者ID:you359,項目名稱:Keras-FasterRCNN,代碼行數:23,代碼來源:inception_resnet_v2.py

示例7: classifier

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import TimeDistributed [as 別名]
def classifier(base_layers, input_rois, num_rois, nb_classes = 21, trainable=False):

    # compile times on theano tend to be very high, so we use smaller ROI pooling regions to workaround

    if K.backend() == 'tensorflow':
        pooling_regions = 7
        input_shape = (num_rois, 7, 7, 512)
    elif K.backend() == 'theano':
        pooling_regions = 7
        input_shape = (num_rois, 512, 7, 7)

    out_roi_pool = RoiPoolingConv(pooling_regions, num_rois)([base_layers, input_rois])

    out = TimeDistributed(Flatten(name='flatten'))(out_roi_pool)
    out = TimeDistributed(Dense(4096, activation='relu', name='fc1'))(out)
    out = TimeDistributed(Dense(4096, activation='relu', name='fc2'))(out)

    out_class = TimeDistributed(Dense(nb_classes, activation='softmax', kernel_initializer='zero'), name='dense_class_{}'.format(nb_classes))(out)
    # note: no regression target for bg class
    out_regr = TimeDistributed(Dense(4 * (nb_classes-1), activation='linear', kernel_initializer='zero'), name='dense_regress_{}'.format(nb_classes))(out)

    return [out_class, out_regr] 
開發者ID:you359,項目名稱:Keras-FasterRCNN,代碼行數:24,代碼來源:vgg.py

示例8: classifier_layers

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import TimeDistributed [as 別名]
def classifier_layers(x, input_shape, trainable=False):

    # compile times on theano tend to be very high, so we use smaller ROI pooling regions to workaround
    # (hence a smaller stride in the region that follows the ROI pool)
    x = TimeDistributed(SeparableConv2D(1536, (3, 3),
                                        padding='same',
                                        use_bias=False),
                        name='block14_sepconv1')(x)
    x = TimeDistributed(BatchNormalization(), name='block14_sepconv1_bn')(x)
    x = Activation('relu', name='block14_sepconv1_act')(x)

    x = TimeDistributed(SeparableConv2D(2048, (3, 3),
                                        padding='same',
                                        use_bias=False),
                        name='block14_sepconv2')(x)
    x = TimeDistributed(BatchNormalization(), name='block14_sepconv2_bn')(x)
    x = Activation('relu', name='block14_sepconv2_act')(x)

    TimeDistributed(GlobalAveragePooling2D(), name='avg_pool')(x)

    return x 
開發者ID:you359,項目名稱:Keras-FasterRCNN,代碼行數:23,代碼來源:xception.py

示例9: classifier

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import TimeDistributed [as 別名]
def classifier(base_layers, input_rois, num_rois, nb_classes,trainable=True):
    """
    The final classifier to match original implementation for VGG-16
    The only difference being the Roipooling layer uses tensorflow's bilinear interpolation
    """
    
    pooling_regions = 7
    out_roi_pool = RoiPoolingConv(pooling_regions, num_rois,trainable=trainable)([base_layers, input_rois])

    out = TimeDistributed(Flatten(),name="flatten",trainable=trainable)(out_roi_pool)
    out = TimeDistributed(Dense(4096, activation='relu',trainable=trainable),name="fc1",trainable=trainable)(out)
    out = TimeDistributed(Dropout(0.5),name="drop_out1",trainable=trainable)(out) # add dropout to match original implememtation
    out = TimeDistributed(Dense(4096, activation='relu',trainable=trainable),name="fc2",trainable=trainable)(out)
    out = TimeDistributed(Dropout(0.5),name="drop_out2",trainable=trainable)(out) # add dropout to match original implementation

    out_class = TimeDistributed(Dense(nb_classes, activation='softmax', kernel_initializer='zero',trainable=trainable), name='dense_class_{}'.format(nb_classes),trainable=trainable)(out)
    # note: no regression target for bg class
    out_regr = TimeDistributed(Dense(4 * (nb_classes-1), activation='linear', kernel_initializer='zero',trainable=trainable), name='dense_regress_{}'.format(nb_classes),trainable=trainable)(out)

    return [out_class, out_regr] 
開發者ID:Abhijit-2592,項目名稱:Keras_object_detection,代碼行數:22,代碼來源:nn_arch_vgg16.py

示例10: create_model

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import TimeDistributed [as 別名]
def create_model(maxlen, chars, word_size, infer=False):
    """

    :param infer:
    :param maxlen:
    :param chars:
    :param word_size:
    :return:
    """
    sequence = Input(shape=(maxlen,), dtype='int32')
    embedded = Embedding(len(chars) + 1, word_size, input_length=maxlen, mask_zero=True)(sequence)
    blstm = Bidirectional(LSTM(64, return_sequences=True), merge_mode='sum')(embedded)
    output = TimeDistributed(Dense(5, activation='softmax'))(blstm)
    model = Model(input=sequence, output=output)
    if not infer:
        model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
    return model 
開發者ID:stephen-v,項目名稱:zh-segmentation-keras,代碼行數:19,代碼來源:lstm_model.py

示例11: create_lstm

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import TimeDistributed [as 別名]
def create_lstm(hidden_units=[50], dropout=0.05, bidirectional=True):
    model = Sequential()

    if bidirectional:
        i = 0
        for unit in hidden_units:
            if i == 0:
                model.add(Bidirectional(LSTM(unit, dropout=dropout, return_sequences=True), input_shape=(None, config.N_MELS)))
            else:
                model.add(Bidirectional(LSTM(unit, dropout=dropout, return_sequences=True)))
            i += 1
    else:
        i = 0
        for unit in hidden_units:
            if i == 0:
                model.add(LSTM(unit, dropout=dropout, return_sequences=True), input_shape=(None, config.N_MELS))
            else:
                model.add(LSTM(unit, dropout=dropout, return_sequences=True))
            i += 1

    model.add(TimeDistributed(Dense(config.CLASSES, activation='sigmoid')))

    return model 
開發者ID:qlemaire22,項目名稱:speech-music-detection,代碼行數:25,代碼來源:lstm.py

示例12: AlternativeRNNModel

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import TimeDistributed [as 別名]
def AlternativeRNNModel(vocab_size, max_len, rnnConfig, model_type):
	embedding_size = rnnConfig['embedding_size']
	if model_type == 'inceptionv3':
		# InceptionV3 outputs a 2048 dimensional vector for each image, which we'll feed to RNN Model
		image_input = Input(shape=(2048,))
	elif model_type == 'vgg16':
		# VGG16 outputs a 4096 dimensional vector for each image, which we'll feed to RNN Model
		image_input = Input(shape=(4096,))
	image_model_1 = Dense(embedding_size, activation='relu')(image_input)
	image_model = RepeatVector(max_len)(image_model_1)

	caption_input = Input(shape=(max_len,))
	# mask_zero: We zero pad inputs to the same length, the zero mask ignores those inputs. E.g. it is an efficiency.
	caption_model_1 = Embedding(vocab_size, embedding_size, mask_zero=True)(caption_input)
	# Since we are going to predict the next word using the previous words
	# (length of previous words changes with every iteration over the caption), we have to set return_sequences = True.
	caption_model_2 = LSTM(rnnConfig['LSTM_units'], return_sequences=True)(caption_model_1)
	# caption_model = TimeDistributed(Dense(embedding_size, activation='relu'))(caption_model_2)
	caption_model = TimeDistributed(Dense(embedding_size))(caption_model_2)

	# Merging the models and creating a softmax classifier
	final_model_1 = concatenate([image_model, caption_model])
	# final_model_2 = LSTM(rnnConfig['LSTM_units'], return_sequences=False)(final_model_1)
	final_model_2 = Bidirectional(LSTM(rnnConfig['LSTM_units'], return_sequences=False))(final_model_1)
	# final_model_3 = Dense(rnnConfig['dense_units'], activation='relu')(final_model_2)
	# final_model = Dense(vocab_size, activation='softmax')(final_model_3)
	final_model = Dense(vocab_size, activation='softmax')(final_model_2)

	model = Model(inputs=[image_input, caption_input], outputs=final_model)
	model.compile(loss='categorical_crossentropy', optimizer='adam')
	# model.compile(loss='categorical_crossentropy', optimizer='rmsprop')
	return model 
開發者ID:dabasajay,項目名稱:Image-Caption-Generator,代碼行數:34,代碼來源:model.py

示例13: build

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import TimeDistributed [as 別名]
def build(self, input_shape):
        self._validate_input_shape(input_shape)
        
        d_k = self._d_k if self._d_k else input_shape[1][-1]
        d_model = self._d_model if self._d_model else input_shape[1][-1]
        d_v = self._d_v

        if type(d_k) == tf.Dimension:
            d_k = d_k.value
        if type(d_model) == tf.Dimension:
            d_model = d_model.value
        
        self._q_layers = []
        self._k_layers = []
        self._v_layers = []
        self._sdp_layer = ScaledDotProductAttention(return_attention=self._return_attention)
    
        for _ in range(self._h):
            self._q_layers.append(
                TimeDistributed(
                    Dense(d_k, activation=self._activation, use_bias=False)
                )
            )
            self._k_layers.append(
                TimeDistributed(
                    Dense(d_k, activation=self._activation, use_bias=False)
                )
            )
            self._v_layers.append(
                TimeDistributed(
                    Dense(d_v, activation=self._activation, use_bias=False)
                )
            )
        
        self._output = TimeDistributed(Dense(d_model))
        #if self._return_attention:
        #    self._output = Concatenate() 
開發者ID:zimmerrol,項目名稱:keras-utility-layer-collection,代碼行數:39,代碼來源:attention.py

示例14: creat_model

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import TimeDistributed [as 別名]
def creat_model(input_shape, num_class):

    init = initializers.Orthogonal(gain=args.norm)
    sequence_input =Input(shape=input_shape)
    mask = Masking(mask_value=0.)(sequence_input)
    if args.aug:
        mask = augmentaion()(mask)
    X = Noise(0.075)(mask)
    if args.model[0:2]=='VA':
        # VA
        trans = LSTM(args.nhid,recurrent_activation='sigmoid',return_sequences=True,implementation=2,recurrent_initializer=init)(X)
        trans = Dropout(0.5)(trans)
        trans = TimeDistributed(Dense(3,kernel_initializer='zeros'))(trans)
        rot = LSTM(args.nhid,recurrent_activation='sigmoid',return_sequences=True,implementation=2,recurrent_initializer=init)(X)
        rot = Dropout(0.5)(rot)
        rot = TimeDistributed(Dense(3,kernel_initializer='zeros'))(rot)
        transform = Concatenate()([rot,trans])
        X = VA()([mask,transform])

    X = LSTM(args.nhid,recurrent_activation='sigmoid',return_sequences=True,implementation=2,recurrent_initializer=init)(X)
    X = Dropout(0.5)(X)
    X = LSTM(args.nhid,recurrent_activation='sigmoid',return_sequences=True,implementation=2,recurrent_initializer=init)(X)
    X = Dropout(0.5)(X)
    X = LSTM(args.nhid,recurrent_activation='sigmoid',return_sequences=True,implementation=2,recurrent_initializer=init)(X)
    X = Dropout(0.5)(X)
    X = TimeDistributed(Dense(num_class))(X)
    X = MeanOverTime()(X)
    X = Activation('softmax')(X)

    model=Model(sequence_input,X)
    return model 
開發者ID:microsoft,項目名稱:View-Adaptive-Neural-Networks-for-Skeleton-based-Human-Action-Recognition,代碼行數:33,代碼來源:va-rnn.py

示例15: set_trainable

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import TimeDistributed [as 別名]
def set_trainable(self, layer_regex, keras_model=None, indent=0, verbose=1):
        """Sets model layers as trainable if their names match
        the given regular expression.
        """
        # Print message on the first call (but not on recursive calls)
        if verbose > 0 and keras_model is None:
            log("Selecting layers to train")

        keras_model = keras_model or self.keras_model

        # In multi-GPU training, we wrap the model. Get layers
        # of the inner model because they have the weights.
        layers = keras_model.inner_model.layers if hasattr(keras_model, "inner_model")\
            else keras_model.layers

        for layer in layers:
            # Is the layer a model?
            if layer.__class__.__name__ == 'Model':
                print("In model: ", layer.name)
                self.set_trainable(
                    layer_regex, keras_model=layer, indent=indent + 4)
                continue

            if not layer.weights:
                continue
            # Is it trainable?
            trainable = bool(re.fullmatch(layer_regex, layer.name))
            # Update layer. If layer is a container, update inner layer.
            if layer.__class__.__name__ == 'TimeDistributed':
                layer.layer.trainable = trainable
            else:
                layer.trainable = trainable
            # Print trainable layer names
            if trainable and verbose > 0:
                log("{}{:20}   ({})".format(" " * indent, layer.name,
                                            layer.__class__.__name__)) 
開發者ID:dataiku,項目名稱:dataiku-contrib,代碼行數:38,代碼來源:model.py


注:本文中的keras.layers.TimeDistributed方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。