當前位置: 首頁>>代碼示例>>Python>>正文


Python layers.SpatialDropout2D方法代碼示例

本文整理匯總了Python中keras.layers.SpatialDropout2D方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.SpatialDropout2D方法的具體用法?Python layers.SpatialDropout2D怎麽用?Python layers.SpatialDropout2D使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.layers的用法示例。


在下文中一共展示了layers.SpatialDropout2D方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: keras_dropout

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import SpatialDropout2D [as 別名]
def keras_dropout(layer, rate):
    """
    Keras dropout layer.
    """

    from keras import layers

    input_dim = len(layer.input.shape)
    if input_dim == 2:
        return layers.SpatialDropout1D(rate)
    elif input_dim == 3:
        return layers.SpatialDropout2D(rate)
    elif input_dim == 4:
        return layers.SpatialDropout3D(rate)
    else:
        return layers.Dropout(rate) 
開發者ID:microsoft,項目名稱:nni,代碼行數:18,代碼來源:layers.py

示例2: test_dropout

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import SpatialDropout2D [as 別名]
def test_dropout():
    layer_test(layers.Dropout,
               kwargs={'rate': 0.5},
               input_shape=(3, 2))

    layer_test(layers.Dropout,
               kwargs={'rate': 0.5, 'noise_shape': [3, 1]},
               input_shape=(3, 2))

    layer_test(layers.Dropout,
               kwargs={'rate': 0.5, 'noise_shape': [None, 1]},
               input_shape=(3, 2))

    layer_test(layers.SpatialDropout1D,
               kwargs={'rate': 0.5},
               input_shape=(2, 3, 4))

    for data_format in ['channels_last', 'channels_first']:
        for shape in [(4, 5), (4, 5, 6)]:
            if data_format == 'channels_last':
                input_shape = (2,) + shape + (3,)
            else:
                input_shape = (2, 3) + shape
            layer_test(layers.SpatialDropout2D if len(shape) == 2 else layers.SpatialDropout3D,
                       kwargs={'rate': 0.5,
                               'data_format': data_format},
                       input_shape=input_shape)

            # Test invalid use cases
            with pytest.raises(ValueError):
                layer_test(layers.SpatialDropout2D if len(shape) == 2 else layers.SpatialDropout3D,
                           kwargs={'rate': 0.5,
                                   'data_format': 'channels_middle'},
                           input_shape=input_shape) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:36,代碼來源:core_test.py

示例3: build_psp

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import SpatialDropout2D [as 別名]
def build_psp(backbone,
              psp_layer,
              last_upsampling_factor,
              classes=21,
              activation='softmax',
              conv_filters=512,
              pooling_type='avg',
              dropout=None,
              final_interpolation='bilinear',
              use_batchnorm=True):

    input = backbone.input

    x = extract_outputs(backbone, [psp_layer])[0]

    x = PyramidPoolingModule(
        conv_filters=conv_filters,
        pooling_type=pooling_type,
        use_batchnorm=use_batchnorm)(x)

    x = Conv2DBlock(512, (1, 1), activation='relu', padding='same',
                    use_batchnorm=use_batchnorm)(x)

    if dropout is not None:
        x = SpatialDropout2D(dropout)(x)

    x = Conv2D(classes, (3,3), padding='same', name='final_conv')(x)

    if final_interpolation == 'bilinear':
        x = ResizeImage(to_tuple(last_upsampling_factor))(x)
    elif final_interpolation == 'duc':
        x = DUC(to_tuple(last_upsampling_factor))(x)
    else:
        raise ValueError('Unsupported interpolation type {}. '.format(final_interpolation) +
                         'Use `duc` or `bilinear`.')

    x = Activation(activation, name=activation)(x)

    model = Model(input, x)

    return model 
開發者ID:SpaceNetChallenge,項目名稱:SpaceNet_Off_Nadir_Solutions,代碼行數:43,代碼來源:builder.py

示例4: decoder_a

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import SpatialDropout2D [as 別名]
def decoder_a(self):
        """ Decoder for side A """
        kwargs = dict(kernel_size=5, kernel_initializer=self.kernel_initializer)
        decoder_complexity = 320 if self.lowmem else self.config["complexity_decoder_a"]
        dense_dim = 384 if self.lowmem else 512
        decoder_shape = self.input_shape[0] // 16
        input_ = Input(shape=(decoder_shape, decoder_shape, dense_dim))

        var_x = input_

        var_x = self.blocks.upscale(var_x, decoder_complexity, **kwargs)
        var_x = SpatialDropout2D(0.25)(var_x)
        var_x = self.blocks.upscale(var_x, decoder_complexity, **kwargs)
        if self.lowmem:
            var_x = SpatialDropout2D(0.15)(var_x)
        else:
            var_x = SpatialDropout2D(0.25)(var_x)
        var_x = self.blocks.upscale(var_x, decoder_complexity // 2, **kwargs)
        var_x = self.blocks.upscale(var_x, decoder_complexity // 4, **kwargs)
        var_x = self.blocks.conv2d(var_x, 3,
                                   kernel_size=5,
                                   padding="same",
                                   activation="sigmoid",
                                   name="face_out")
        outputs = [var_x]

        if self.config.get("learn_mask", False):
            var_y = input_
            var_y = self.blocks.upscale(var_y, decoder_complexity)
            var_y = self.blocks.upscale(var_y, decoder_complexity)
            var_y = self.blocks.upscale(var_y, decoder_complexity // 2)
            var_y = self.blocks.upscale(var_y, decoder_complexity // 4)
            var_y = self.blocks.conv2d(var_y, 1,
                                       kernel_size=5,
                                       padding="same",
                                       activation="sigmoid",
                                       name="mask_out")
            outputs.append(var_y)
        return KerasModel(input_, outputs=outputs) 
開發者ID:deepfakes,項目名稱:faceswap,代碼行數:41,代碼來源:unbalanced.py

示例5: build_shallow_weight

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import SpatialDropout2D [as 別名]
def build_shallow_weight(channels, width, height, output_size, nb_classes):
	# input
	inputs = Input(shape=(channels, height, width))
	# 1 conv
	conv1_1 = Convolution2D(8, 3, 3, border_mode='same', activation='relu', 
		W_regularizer=l2(0.01))(inputs)
	bn1 = BatchNormalization(mode=0, axis=1)(conv1_1)
	pool1 = MaxPooling2D(pool_size=(2,2), strides=(2,2))(bn1)
	gn1 = GaussianNoise(0.5)(pool1)
	drop1 = SpatialDropout2D(0.5)(gn1)
	# 2 conv
	conv2_1 = Convolution2D(8, 3, 3, border_mode='same', activation='relu',
		W_regularizer=l2(0.01))(gn1)
	bn2 = BatchNormalization(mode=0, axis=1)(conv2_1)
	pool2 = MaxPooling2D(pool_size=(2,2), strides=(2,2))(bn2)
	gn2 = GaussianNoise(0.5)(pool2)
	drop2 = SpatialDropout2D(0.5)(gn2)
	# 3 conv
	conv3_1 = Convolution2D(8, 3, 3, border_mode='same', activation='relu',
		W_regularizer=l2(0.01))(drop2)
	bn3 = BatchNormalization(mode=0, axis=1)(conv3_1)
	pool3 = MaxPooling2D(pool_size=(2,2), strides=(2,2))(bn3)
	gn3 = GaussianNoise(0.5)(pool3)
	drop3 = SpatialDropout2D(0.5)(gn3)
	# 4 conv
	conv4_1 = Convolution2D(8, 3, 3, border_mode='same', activation='relu',
		W_regularizer=l2(0.01))(gn3)
	bn4 = BatchNormalization(mode=0, axis=1)(conv4_1)
	pool4 = MaxPooling2D(pool_size=(2,2), strides=(2,2))(bn4)
	gn4 = GaussianNoise(0.5)(pool4)
	drop4 = SpatialDropout2D(0.5)(gn4)
	# flaten
	flat = Flatten()(gn4)
	# 1 dense
	dense1 = Dense(8, activation='relu', W_regularizer=l2(0.1))(flat)
	bn6 = BatchNormalization(mode=0, axis=1)(dense1)
	drop6 = Dropout(0.5)(bn6)
	# output
	out = []
	for i in range(output_size):
		out.append(Dense(nb_classes, activation='softmax')(bn6))
	if output_size > 1:
		merged_out = merge(out, mode='concat')
		shaped_out = Reshape((output_size, nb_classes))(merged_out)
		sample_weight_mode = 'temporal'
	else:
		shaped_out = out
		sample_weight_mode = None
	model = Model(input=[inputs], output=shaped_out)
	model.summary()
	model.compile(loss='categorical_crossentropy',
				  optimizer='adam',
				  metrics=[categorical_accuracy_per_sequence],
				  sample_weight_mode = sample_weight_mode
				  )

	return model 
開發者ID:xingjian-f,項目名稱:DeepLearning-OCR,代碼行數:59,代碼來源:shallow_weight.py

示例6: unet_model1

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import SpatialDropout2D [as 別名]
def unet_model1():
    inputs = Input((1, 512, 512))
    conv1 = Convolution2D(width, 3, 3, activation='relu', border_mode='same')(inputs)
    conv1 = BatchNormalization(axis = 1)(conv1)
    conv1 = Convolution2D(width, 3, 3, activation='relu', border_mode='same')(conv1)
    pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)

    conv2 = Convolution2D(width*2, 3, 3, activation='relu', border_mode='same')(pool1)
    conv2 = BatchNormalization(axis = 1)(conv2)
    conv2 = Convolution2D(width*2, 3, 3, activation='relu', border_mode='same')(conv2)
    pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)

    conv3 = Convolution2D(width*4, 3, 3, activation='relu', border_mode='same')(pool2)
    conv3 = BatchNormalization(axis = 1)(conv3)
    conv3 = Convolution2D(width*4, 3, 3, activation='relu', border_mode='same')(conv3)
    pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)

    conv4 = Convolution2D(width*8, 3, 3, activation='relu', border_mode='same')(pool3)
    conv4 = BatchNormalization(axis = 1)(conv4)
    conv4 = Convolution2D(width*8, 3, 3, activation='relu', border_mode='same')(conv4)
    pool4 = MaxPooling2D(pool_size=(2, 2))(conv4)

    conv5 = Convolution2D(width*16, 3, 3, activation='relu', border_mode='same')(pool4)
    conv5 = BatchNormalization(axis = 1)(conv5)
    conv5 = Convolution2D(width*16, 3, 3, activation='relu', border_mode='same')(conv5)

    up6 = merge([UpSampling2D(size=(2, 2))(conv5), conv4], mode='concat', concat_axis=1)
    conv6 = SpatialDropout2D(dropout_rate)(up6)
    conv6 = Convolution2D(width*8, 3, 3, activation='relu', border_mode='same')(conv6)
    conv6 = Convolution2D(width*8, 3, 3, activation='relu', border_mode='same')(conv6)

    up7 = merge([UpSampling2D(size=(2, 2))(conv6), conv3], mode='concat', concat_axis=1)
    conv7 = SpatialDropout2D(dropout_rate)(up7)
    conv7 = Convolution2D(width*4, 3, 3, activation='relu', border_mode='same')(conv7)
    conv7 = Convolution2D(width*4, 3, 3, activation='relu', border_mode='same')(conv7)

    up8 = merge([UpSampling2D(size=(2, 2))(conv7), conv2], mode='concat', concat_axis=1)
    conv8 = SpatialDropout2D(dropout_rate)(up8)
    conv8 = Convolution2D(width*2, 3, 3, activation='relu', border_mode='same')(conv8)
    conv8 = Convolution2D(width*2, 3, 3, activation='relu', border_mode='same')(conv8)

    up9 = merge([UpSampling2D(size=(2, 2))(conv8), conv1], mode='concat', concat_axis=1)
    conv9 = SpatialDropout2D(dropout_rate)(up9)
    conv9 = Convolution2D(width, 3, 3, activation='relu', border_mode='same')(conv9)
    conv9 = Convolution2D(width, 3, 3, activation='relu', border_mode='same')(conv9)
    conv10 = Convolution2D(1, 1, 1, activation='sigmoid')(conv9)

    model = Model(input=inputs, output=conv10)
    model.compile(optimizer=Adam(lr=1e-5), loss=dice_coef_loss, metrics=[dice_coef])
    return model 
開發者ID:Wrosinski,項目名稱:Kaggle-DSB,代碼行數:52,代碼來源:unet_models.py


注:本文中的keras.layers.SpatialDropout2D方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。