當前位置: 首頁>>代碼示例>>Python>>正文


Python layers.Softmax方法代碼示例

本文整理匯總了Python中keras.layers.Softmax方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.Softmax方法的具體用法?Python layers.Softmax怎麽用?Python layers.Softmax使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.layers的用法示例。


在下文中一共展示了layers.Softmax方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __output

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Softmax [as 別名]
def __output(self, dec_output):

        output_dropout_layer = Dropout(self.output_dropout)

        output_layer = Conv1D(self.tgt_vocab_size + 1,
                              kernel_size=1,
                              activation=gelu,
                              kernel_regularizer=regularizers.l2(self.l2_reg_penalty),
                              name='output_layer')

        output_softmax_layer = Softmax(name="word_predictions")

        if self.use_crf:
            return output_layer(output_dropout_layer(dec_output))
        else:
            return output_softmax_layer(output_layer(output_dropout_layer(dec_output))) 
開發者ID:GlassyWing,項目名稱:transformer-word-segmenter,代碼行數:18,代碼來源:__init__.py

示例2: create_model

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Softmax [as 別名]
def create_model(input_shape: tuple, nb_classes: int, init_with_imagenet: bool = False, learning_rate: float = 0.01):
    weights = None
    if init_with_imagenet:
        weights = "imagenet"

    model = VGG16(input_shape=input_shape,
                  classes=nb_classes,
                  weights=weights,
                  include_top=False)
    # "Shallow" VGG for Cifar10
    x = model.get_layer('block3_pool').output
    x = layers.Flatten(name='Flatten')(x)
    x = layers.Dense(512, activation='relu')(x)
    x = layers.Dense(nb_classes)(x)
    x = layers.Softmax()(x)
    model = models.Model(model.input, x)

    loss = losses.categorical_crossentropy
    optimizer = optimizers.SGD(lr=learning_rate, decay=0.99)

    model.compile(optimizer, loss, metrics=["accuracy"])
    return model 
開發者ID:gaborvecsei,項目名稱:Federated-Learning-Mini-Framework,代碼行數:24,代碼來源:models.py

示例3: build_resnet_generator

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Softmax [as 別名]
def build_resnet_generator(input_shape, n_filters, n_residual_blocks,
                           seq_len, vocabulary_size):
    inputs = Input(shape=input_shape)

    # Dense 1: 1 x seq_len x n_filters
    x = Dense(1 * seq_len * n_filters, input_shape=input_shape)(inputs)
    x = Reshape((1, seq_len, n_filters))(x)

    # ResNet blocks
    x = resnet_block(x, n_residual_blocks, n_filters)

    # Output layer
    x = Conv2D(filters=vocabulary_size, kernel_size=1, padding='same')(x)
    x = Softmax(axis=3)(x)

    # create model graph
    model = Model(inputs=inputs, outputs=x, name='Generator')

    print("\nGenerator ResNet")
    model.summary()
    return model 
開發者ID:PacktPublishing,項目名稱:Hands-On-Generative-Adversarial-Networks-with-Keras,代碼行數:23,代碼來源:models.py

示例4: __call__

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Softmax [as 別名]
def __call__(self, q, k, v, attn_mask=None, scale=1.0):
        """

        :param q: Queries 張量,形狀為[N, T_q, D_q]
        :param k: Keys 張量,形狀為[N, T_k, D_k]
        :param v: Values 張量,形狀為[N, T_v, D_v]
        :param attn_mask: 注意力掩碼,形狀為[N, T_q, T_k]
        :param scale: 縮放因子,浮點標量
        :return: 上下文張量和注意力張量
        """

        attention = Lambda(lambda x: K.batch_dot(x[0], x[1], axes=(2, 2)) * scale)([q, k])  # [N, T_q, T_k]
        if attn_mask is not None:
            # 為需要掩碼的地方設置一個負無窮,softmax之後就會趨近於0
            attention = Lambda(lambda x: (-1e+10) * (1 - x[0]) + x[1])([attn_mask, attention])
        attention = Softmax(axis=-1)(attention)
        attention = Dropout(self.attention_dropout)(attention)  # [N, T_q, T_k]
        context = Lambda(lambda x: K.batch_dot(x[0], x[1], axes=(2, 1)))([attention, v])  # [N, T_q, D_q]
        return context, attention 
開發者ID:GlassyWing,項目名稱:transformer-keras,代碼行數:21,代碼來源:core.py

示例5: test_softmax

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Softmax [as 別名]
def test_softmax():
    for axis in [1, -1]:
        layer_test(layers.Softmax, kwargs={'axis': axis},
                   input_shape=(2, 3, 4)) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:6,代碼來源:advanced_activations_test.py

示例6: __init__

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Softmax [as 別名]
def __init__(self,
                 src_vocab_size,
                 src_max_len,
                 tgt_vocab_size,
                 tgt_max_len,
                 optimizer=Adam(lr=1e-3),
                 num_layers=6,
                 model_dim=512,
                 num_heads=8,
                 ffn_dim=2048,
                 dropout=0.2,
                 src_tokenizer=None,
                 tgt_tokenizer=None,
                 weights_path=None):

        self.optimizer = optimizer
        self.src_max_len = src_max_len
        self.tgt_max_len = tgt_max_len
        self.src_vocab_size = src_vocab_size
        self.tgt_vocab_size = tgt_vocab_size
        self.model_dim = model_dim
        self.num_layers = num_layers
        self.num_heads = num_heads
        self.ffn_dim = ffn_dim
        self.dropout = dropout

        self.decode_model = None  # used in beam_search
        self.encode_model = None  # used in beam_search
        self.src_tokenizer = src_tokenizer
        self.tgt_tokenizer = tgt_tokenizer

        self.encoder = Encoder(src_vocab_size, src_max_len, num_layers, model_dim,
                               num_heads, ffn_dim, dropout)
        self.decoder = Decoder(tgt_vocab_size, tgt_max_len, num_layers, model_dim,
                               num_heads, ffn_dim, dropout)
        self.linear = Dense(tgt_vocab_size + 1, use_bias=False)
        self.softmax = Softmax(axis=2)

        self.pred_model, self.model = self.__build_model()
        if weights_path is not None:
            self.model.load_weights(weights_path) 
開發者ID:GlassyWing,項目名稱:transformer-keras,代碼行數:43,代碼來源:core.py

示例7: universal_transformer_gpt_model

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Softmax [as 別名]
def universal_transformer_gpt_model(
        max_seq_length: int, vocabulary_size: int,
        word_embedding_size: int, transformer_depth: int,
        num_heads: int, transformer_dropout: float = 0.1,
        embedding_dropout: float = 0.6,
        l2_reg_penalty: float = 1e-6,
        confidence_penalty_weight: float = 0.1):
    """
    A model which is similar to the one described by OpenAI in paper
    "Improving Language Understanding by Generative Pre-Training", except
    that it relies L2 regularization of the word embedding matrix
    (instead of the dropout), and uses Universal Transformer architecture.
    """
    word_ids = Input(shape=(max_seq_length,), dtype='int32', name='word_ids')
    l2_regularizer = (regularizers.l2(l2_reg_penalty) if l2_reg_penalty
                      else None)
    embedding_layer = ReusableEmbedding(
        vocabulary_size, word_embedding_size,
        input_length=max_seq_length,
        name='bpe_embeddings',
        # Regularization is based on paper "A Comparative Study on
        # Regularization Strategies for Embedding-based Neural Networks"
        # https://arxiv.org/pdf/1508.03721.pdf
        embeddings_regularizer=l2_regularizer)
    output_layer = TiedOutputEmbedding(
        projection_regularizer=l2_regularizer,
        projection_dropout=embedding_dropout,
        name='word_prediction_logits')
    coordinate_embedding_layer = TransformerCoordinateEmbedding(
        transformer_depth,
        name='coordinate_embedding')
    transformer_act_layer = TransformerACT(name='adaptive_computation_time')
    transformer_block = TransformerBlock(
        name='transformer', num_heads=num_heads,
        residual_dropout=transformer_dropout,
        attention_dropout=transformer_dropout,
        use_masking=True, vanilla_wiring=False)
    output_softmax_layer = Softmax(name='word_predictions')

    next_step_input, embedding_matrix = embedding_layer(word_ids)
    act_output = next_step_input

    for i in range(transformer_depth):
        next_step_input = coordinate_embedding_layer(next_step_input, step=i)
        next_step_input = transformer_block(next_step_input)
        next_step_input, act_output = transformer_act_layer(next_step_input)

    transformer_act_layer.finalize()
    next_step_input = act_output
    word_predictions = output_softmax_layer(
        output_layer([next_step_input, embedding_matrix]))
    model = Model(inputs=[word_ids], outputs=[word_predictions])
    # Penalty for confidence of the output distribution, as described in
    # "Regularizing Neural Networks by Penalizing Confident
    # Output Distributions" (https://arxiv.org/abs/1701.06548)
    confidence_penalty = K.mean(
        confidence_penalty_weight *
        K.sum(word_predictions * K.log(word_predictions), axis=-1))
    model.add_loss(confidence_penalty)
    return model 
開發者ID:kpot,項目名稱:keras-transformer,代碼行數:62,代碼來源:models.py

示例8: vanilla_transformer_gpt_model

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Softmax [as 別名]
def vanilla_transformer_gpt_model(
        max_seq_length: int, vocabulary_size: int,
        word_embedding_size: int, transformer_depth: int,
        num_heads: int, transformer_dropout: float = 0.1,
        embedding_dropout: float = 0.6,
        l2_reg_penalty: float = 1e-6,
        confidence_penalty_weight: float = 0.1):
    """
    A model which is almost identical to the one described by OpenAI in paper
    "Improving Language Understanding by Generative Pre-Training", except
    that it uses L2 regularization of the word embedding matrix,
    instead of the dropout.
    """
    word_ids = Input(shape=(max_seq_length,), dtype='int32', name='word_ids')
    l2_regularizer = (regularizers.l2(l2_reg_penalty) if l2_reg_penalty
                      else None)
    embedding_layer = ReusableEmbedding(
        vocabulary_size, word_embedding_size,
        input_length=max_seq_length,
        name='bpe_embeddings',
        # Regularization is based on paper "A Comparative Study on
        # Regularization Strategies for Embedding-based Neural Networks"
        # https://arxiv.org/pdf/1508.03721.pdf
        embeddings_regularizer=l2_regularizer)
    output_layer = TiedOutputEmbedding(
        projection_regularizer=l2_regularizer,
        projection_dropout=embedding_dropout,
        name='word_prediction_logits')
    coordinate_embedding_layer = TransformerCoordinateEmbedding(
        1,
        name='coordinate_embedding')
    output_softmax_layer = Softmax(name='word_predictions')

    next_step_input, embedding_matrix = embedding_layer(word_ids)

    next_step_input = coordinate_embedding_layer(next_step_input, step=0)
    for i in range(transformer_depth):
        next_step_input = (
            TransformerBlock(
                name='transformer' + str(i), num_heads=num_heads,
                residual_dropout=transformer_dropout,
                attention_dropout=transformer_dropout,
                use_masking=True,
                vanilla_wiring=True)
            (next_step_input))

    word_predictions = output_softmax_layer(
        output_layer([next_step_input, embedding_matrix]))
    model = Model(inputs=[word_ids], outputs=[word_predictions])
    # Penalty for confidence of the output distribution, as described in
    # "Regularizing Neural Networks by Penalizing Confident
    # Output Distributions" (https://arxiv.org/abs/1701.06548)
    confidence_penalty = K.mean(
        confidence_penalty_weight *
        K.sum(word_predictions * K.log(word_predictions), axis=-1))
    model.add_loss(confidence_penalty)
    return model 
開發者ID:kpot,項目名稱:keras-transformer,代碼行數:59,代碼來源:models.py


注:本文中的keras.layers.Softmax方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。