當前位置: 首頁>>代碼示例>>Python>>正文


Python layers.SimpleRNN方法代碼示例

本文整理匯總了Python中keras.layers.SimpleRNN方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.SimpleRNN方法的具體用法?Python layers.SimpleRNN怎麽用?Python layers.SimpleRNN使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.layers的用法示例。


在下文中一共展示了layers.SimpleRNN方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _build_model

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import SimpleRNN [as 別名]
def _build_model(self, num_features, num_actions, max_history_len):
        """Build a keras model and return a compiled model.
        :param max_history_len: The maximum number of historical turns used to
                                decide on next action"""
        from keras.layers import Activation, Masking, Dense, SimpleRNN
        from keras.models import Sequential

        n_hidden = 8  # size of hidden layer in RNN
        # Build Model
        batch_input_shape = (None, max_history_len, num_features)

        model = Sequential()
        model.add(Masking(-1, batch_input_shape=batch_input_shape))
        model.add(SimpleRNN(n_hidden, batch_input_shape=batch_input_shape))
        model.add(Dense(input_dim=n_hidden, output_dim=num_actions))
        model.add(Activation('softmax'))

        model.compile(loss='categorical_crossentropy',
                      optimizer='adam',
                      metrics=['accuracy'])

        logger.debug(model.summary())
        return model 
開發者ID:Rowl1ng,項目名稱:rasa_wechat,代碼行數:25,代碼來源:policy.py

示例2: test_tiny_sequence_simple_rnn_random

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import SimpleRNN [as 別名]
def test_tiny_sequence_simple_rnn_random(self):
        np.random.seed(1988)
        input_dim = 2
        input_length = 4
        num_channels = 3

        # Define a model
        model = Sequential()
        model.add(SimpleRNN(num_channels, input_shape=(input_length, input_dim)))

        # Set some random weights
        model.set_weights(
            [np.random.rand(*w.shape) * 0.2 - 0.1 for w in model.get_weights()]
        )

        # Test the keras model
        self._test_model(model) 
開發者ID:apple,項目名稱:coremltools,代碼行數:19,代碼來源:test_keras2_numeric.py

示例3: test_tiny_seq2seq_rnn_random

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import SimpleRNN [as 別名]
def test_tiny_seq2seq_rnn_random(self):
        np.random.seed(1988)
        input_dim = 2
        input_length = 4
        num_channels = 3

        # Define a model
        model = Sequential()
        model.add(
            SimpleRNN(
                num_channels,
                input_shape=(input_length, input_dim),
                return_sequences=True,
            )
        )

        # Set some random weights
        model.set_weights(
            [np.random.rand(*w.shape) * 0.2 - 0.1 for w in model.get_weights()]
        )

        # Test the keras model
        self._test_model(model) 
開發者ID:apple,項目名稱:coremltools,代碼行數:25,代碼來源:test_keras2_numeric.py

示例4: test_rnn_seq

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import SimpleRNN [as 別名]
def test_rnn_seq(self):
        np.random.seed(1988)
        input_dim = 11
        input_length = 5

        # Define a model
        model = Sequential()
        model.add(
            SimpleRNN(20, input_shape=(input_length, input_dim), return_sequences=False)
        )

        # Set some random weights
        model.set_weights(
            [np.random.rand(*w.shape) * 0.2 - 0.1 for w in model.get_weights()]
        )

        # Test the keras model
        self._test_model(model) 
開發者ID:apple,項目名稱:coremltools,代碼行數:20,代碼來源:test_keras2_numeric.py

示例5: test_medium_no_sequence_simple_rnn_random

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import SimpleRNN [as 別名]
def test_medium_no_sequence_simple_rnn_random(self):
        np.random.seed(1988)
        input_dim = 10
        input_length = 1
        num_channels = 10

        # Define a model
        model = Sequential()
        model.add(SimpleRNN(num_channels, input_shape=(input_length, input_dim)))

        # Set some random weights
        model.set_weights(
            [np.random.rand(*w.shape) * 0.2 - 0.1 for w in model.get_weights()]
        )

        # Test the keras model
        self._test_model(model) 
開發者ID:apple,項目名稱:coremltools,代碼行數:19,代碼來源:test_keras2_numeric.py

示例6: test_merge_mask_3d

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import SimpleRNN [as 別名]
def test_merge_mask_3d():
    rand = lambda *shape: np.asarray(np.random.random(shape) > 0.5, dtype='int32')

    # embeddings
    input_a = layers.Input(shape=(3,), dtype='int32')
    input_b = layers.Input(shape=(3,), dtype='int32')
    embedding = layers.Embedding(3, 4, mask_zero=True)
    embedding_a = embedding(input_a)
    embedding_b = embedding(input_b)

    # rnn
    rnn = layers.SimpleRNN(3, return_sequences=True)
    rnn_a = rnn(embedding_a)
    rnn_b = rnn(embedding_b)

    # concatenation
    merged_concat = legacy_layers.merge([rnn_a, rnn_b], mode='concat', concat_axis=-1)
    model = models.Model([input_a, input_b], [merged_concat])
    model.compile(loss='mse', optimizer='sgd')
    model.fit([rand(2, 3), rand(2, 3)], [rand(2, 3, 6)]) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:22,代碼來源:layers_test.py

示例7: test_keras_import

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import SimpleRNN [as 別名]
def test_keras_import(self):
        model = Sequential()
        model.add(LSTM(64, return_sequences=True, input_shape=(10, 64)))
        model.add(SimpleRNN(32, return_sequences=True))
        model.add(GRU(10, kernel_regularizer=regularizers.l2(0.01),
                      bias_regularizer=regularizers.l2(0.01), recurrent_regularizer=regularizers.l2(0.01),
                      activity_regularizer=regularizers.l2(0.01), kernel_constraint='max_norm',
                      bias_constraint='max_norm', recurrent_constraint='max_norm'))
        model.build()
        json_string = Model.to_json(model)
        with open(os.path.join(settings.BASE_DIR, 'media', 'test.json'), 'w') as out:
            json.dump(json.loads(json_string), out, indent=4)
        sample_file = open(os.path.join(settings.BASE_DIR, 'media', 'test.json'), 'r')
        response = self.client.post(reverse('keras-import'), {'file': sample_file})
        response = json.loads(response.content)
        layerId = sorted(response['net'].keys())
        self.assertEqual(response['result'], 'success')
        self.assertGreaterEqual(len(response['net'][layerId[1]]['params']), 7)
        self.assertGreaterEqual(len(response['net'][layerId[3]]['params']), 7)
        self.assertGreaterEqual(len(response['net'][layerId[6]]['params']), 7)


# ********** Embedding Layers ********** 
開發者ID:Cloud-CV,項目名稱:Fabrik,代碼行數:25,代碼來源:test_views.py

示例8: test_simple_rnn

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import SimpleRNN [as 別名]
def test_simple_rnn(self):
        """
        Test the conversion of a simple RNN layer.
        """
        from keras.layers import SimpleRNN

        # Create a simple Keras model
        model = Sequential()
        model.add(SimpleRNN(32, input_dim=32, input_length=10))

        input_names = ["input"]
        output_names = ["output"]
        spec = keras.convert(model, input_names, output_names).get_spec()
        self.assertIsNotNone(spec)

        # Test the model class
        self.assertIsNotNone(spec.description)
        self.assertTrue(spec.HasField("neuralNetwork"))

        # Test the inputs and outputs
        self.assertEquals(len(spec.description.input), len(input_names) + 1)
        self.assertEquals(input_names[0], spec.description.input[0].name)

        self.assertEquals(32, spec.description.input[1].type.multiArrayType.shape[0])

        self.assertEquals(len(spec.description.output), len(output_names) + 1)
        self.assertEquals(output_names[0], spec.description.output[0].name)
        self.assertEquals(32, spec.description.output[0].type.multiArrayType.shape[0])
        self.assertEquals(32, spec.description.output[1].type.multiArrayType.shape[0])

        # Test the layer parameters.
        layers = spec.neuralNetwork.layers
        layer_0 = layers[0]
        self.assertIsNotNone(layer_0.simpleRecurrent)
        self.assertEquals(len(layer_0.input), 2)
        self.assertEquals(len(layer_0.output), 2) 
開發者ID:apple,項目名稱:coremltools,代碼行數:38,代碼來源:test_keras.py

示例9: test_tiny_no_sequence_simple_rnn_random

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import SimpleRNN [as 別名]
def test_tiny_no_sequence_simple_rnn_random(self):
        np.random.seed(1988)
        input_dim = 10
        input_length = 1
        num_channels = 1

        # Define a model
        model = Sequential()
        model.add(SimpleRNN(num_channels, input_shape=(input_length, input_dim)))

        # Set some random weights
        model.set_weights([np.random.rand(*w.shape) for w in model.get_weights()])

        # Test the keras model
        self._test_model(model) 
開發者ID:apple,項目名稱:coremltools,代碼行數:17,代碼來源:test_keras2_numeric.py

示例10: test_lstm_td

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import SimpleRNN [as 別名]
def test_lstm_td(self):
        np.random.seed(1988)
        input_dim = 2
        input_length = 4
        num_channels = 3

        # Define a model
        model = Sequential()
        model.add(
            SimpleRNN(
                num_channels,
                return_sequences=True,
                input_shape=(input_length, input_dim),
            )
        )
        model.add(TimeDistributed(Dense(5)))

        # Set some random weights
        model.set_weights(
            [np.random.rand(*w.shape) * 0.2 - 0.1 for w in model.get_weights()]
        )

        # Test the keras model
        self._test_model(model)

    # Making sure that giant channel sizes get handled correctly 
開發者ID:apple,項目名稱:coremltools,代碼行數:28,代碼來源:test_keras2_numeric.py

示例11: test_simple_rnn

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import SimpleRNN [as 別名]
def test_simple_rnn(self):
        """
        Test the conversion of a simple RNN layer.
        """
        from keras.layers import SimpleRNN

        # Create a simple Keras model
        model = Sequential()
        model.add(SimpleRNN(32, input_shape=(10, 32)))

        input_names = ["input"]
        output_names = ["output"]
        spec = keras.convert(model, input_names, output_names).get_spec()
        self.assertIsNotNone(spec)

        # Test the model class
        self.assertIsNotNone(spec.description)
        self.assertTrue(spec.HasField("neuralNetwork"))

        # Test the inputs and outputs
        self.assertEquals(len(spec.description.input), len(input_names) + 1)
        self.assertEquals(input_names[0], spec.description.input[0].name)

        self.assertEquals(32, spec.description.input[1].type.multiArrayType.shape[0])

        self.assertEquals(len(spec.description.output), len(output_names) + 1)
        self.assertEquals(output_names[0], spec.description.output[0].name)
        self.assertEquals(32, spec.description.output[0].type.multiArrayType.shape[0])
        self.assertEquals(32, spec.description.output[1].type.multiArrayType.shape[0])

        # Test the layer parameters.
        layers = spec.neuralNetwork.layers
        layer_0 = layers[0]
        self.assertIsNotNone(layer_0.simpleRecurrent)
        self.assertEquals(len(layer_0.input), 2)
        self.assertEquals(len(layer_0.output), 2) 
開發者ID:apple,項目名稱:coremltools,代碼行數:38,代碼來源:test_keras2.py

示例12: test_Bidirectional_trainable

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import SimpleRNN [as 別名]
def test_Bidirectional_trainable():
    # test layers that need learning_phase to be set
    x = Input(shape=(3, 2))
    layer = wrappers.Bidirectional(layers.SimpleRNN(3))
    _ = layer(x)
    assert len(layer.trainable_weights) == 6
    layer.trainable = False
    assert len(layer.trainable_weights) == 0
    layer.trainable = True
    assert len(layer.trainable_weights) == 6 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:12,代碼來源:wrappers_test.py

示例13: test_temporal_classification_functional

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import SimpleRNN [as 別名]
def test_temporal_classification_functional():
    '''
    Classify temporal sequences of float numbers
    of length 3 into 2 classes using
    single layer of GRU units and softmax applied
    to the last activations of the units
    '''
    np.random.seed(1337)
    (x_train, y_train), (x_test, y_test) = get_test_data(num_train=200,
                                                         num_test=20,
                                                         input_shape=(3, 4),
                                                         classification=True,
                                                         num_classes=2)
    y_train = to_categorical(y_train)
    y_test = to_categorical(y_test)

    inputs = layers.Input(shape=(x_train.shape[1], x_train.shape[2]))
    x = layers.SimpleRNN(8)(inputs)
    outputs = layers.Dense(y_train.shape[-1], activation='softmax')(x)
    model = keras.models.Model(inputs, outputs)
    model.compile(loss='categorical_crossentropy',
                  optimizer='rmsprop',
                  metrics=['accuracy'])
    history = model.fit(x_train, y_train, epochs=4, batch_size=10,
                        validation_data=(x_test, y_test),
                        verbose=0)
    assert(history.history['acc'][-1] >= 0.8) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:29,代碼來源:test_temporal_data_tasks.py


注:本文中的keras.layers.SimpleRNN方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。