當前位置: 首頁>>代碼示例>>Python>>正文


Python layers.RepeatVector方法代碼示例

本文整理匯總了Python中keras.layers.RepeatVector方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.RepeatVector方法的具體用法?Python layers.RepeatVector怎麽用?Python layers.RepeatVector使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.layers的用法示例。


在下文中一共展示了layers.RepeatVector方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_repeat_vector

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import RepeatVector [as 別名]
def test_repeat_vector(self):
        from keras.layers import RepeatVector

        model = Sequential()
        model.add(RepeatVector(3, input_shape=(5,)))

        input_names = ["input"]
        output_names = ["output"]
        spec = keras.convert(model, input_names, output_names).get_spec()
        self.assertIsNotNone(spec)
        # Test the model class
        self.assertIsNotNone(spec.description)
        self.assertTrue(spec.HasField("neuralNetwork"))
        # Test the inputs and outputs
        self.assertEquals(len(spec.description.input), len(input_names))
        six.assertCountEqual(
            self, input_names, [x.name for x in spec.description.input]
        )
        self.assertEquals(len(spec.description.output), len(output_names))
        six.assertCountEqual(
            self, output_names, [x.name for x in spec.description.output]
        )
        layers = spec.neuralNetwork.layers
        self.assertIsNotNone(layers[0].sequenceRepeat) 
開發者ID:apple,項目名稱:coremltools,代碼行數:26,代碼來源:test_keras.py

示例2: test_tiny_babi_rnn

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import RepeatVector [as 別名]
def test_tiny_babi_rnn(self):
        vocab_size = 10
        embed_hidden_size = 8
        story_maxlen = 5
        query_maxlen = 5

        input_tensor_1 = Input(shape=(story_maxlen,))
        x1 = Embedding(vocab_size, embed_hidden_size)(input_tensor_1)
        x1 = Dropout(0.3)(x1)

        input_tensor_2 = Input(shape=(query_maxlen,))
        x2 = Embedding(vocab_size, embed_hidden_size)(input_tensor_2)
        x2 = Dropout(0.3)(x2)
        x2 = LSTM(embed_hidden_size, return_sequences=False)(x2)
        x2 = RepeatVector(story_maxlen)(x2)

        x3 = add([x1, x2])
        x3 = LSTM(embed_hidden_size, return_sequences=False)(x3)
        x3 = Dropout(0.3)(x3)
        x3 = Dense(vocab_size, activation="softmax")(x3)

        model = Model(inputs=[input_tensor_1, input_tensor_2], outputs=[x3])

        self._test_model(model, one_dim_seq_flags=[True, True]) 
開發者ID:apple,項目名稱:coremltools,代碼行數:26,代碼來源:test_keras2_numeric.py

示例3: test_repeat_vector

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import RepeatVector [as 別名]
def test_repeat_vector(self):
        from keras.layers import RepeatVector

        model = Sequential()
        model.add(RepeatVector(3, input_shape=(5,)))

        input_names = ["input"]
        output_names = ["output"]
        spec = keras.convert(model, input_names, output_names).get_spec()
        self.assertIsNotNone(spec)
        # Test the model class
        self.assertIsNotNone(spec.description)
        self.assertTrue(spec.HasField("neuralNetwork"))
        # Test the inputs and outputs
        self.assertEquals(len(spec.description.input), len(input_names))
        self.assertEqual(
            sorted(input_names), sorted(map(lambda x: x.name, spec.description.input))
        )
        self.assertEquals(len(spec.description.output), len(output_names))
        self.assertEqual(
            sorted(output_names), sorted(map(lambda x: x.name, spec.description.output))
        )
        layers = spec.neuralNetwork.layers
        self.assertIsNotNone(layers[0].sequenceRepeat) 
開發者ID:apple,項目名稱:coremltools,代碼行數:26,代碼來源:test_keras2.py

示例4: fit_dep

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import RepeatVector [as 別名]
def fit_dep(self, x, y=None):
        timesteps = x.shape[1]
        input_dim = x.shape[2]
        inputs = Input(shape=(timesteps, input_dim))
        encoded = LSTM(self.latent_dim)(inputs)

        decoded = RepeatVector(timesteps)(encoded)
        decoded = LSTM(input_dim, return_sequences=True)(decoded)

        encoded_input = Input(shape=(self.latent_dim,))

        self.sequence_autoencoder = Model(inputs, decoded)
        self.encoder = Model(inputs, encoded)

        self.sequence_autoencoder.compile(
            #loss='binary_crossentropy',
            loss='categorical_crossentropy',
            optimizer='RMSprop',
            metrics=['binary_accuracy']
        )
        self.sequence_autoencoder.fit(x, x) 
開發者ID:plastering,項目名稱:plastering,代碼行數:23,代碼來源:ir2tagsets_seq.py

示例5: repeat_vector

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import RepeatVector [as 別名]
def repeat_vector(inputs):
    """
    Temporary solution:
    Use this function within a Lambda layer to get a repeated layer with a variable 1-st dimension (seq_len).
    May be useful to further feed it to a Concatenate layer.

    inputs == (layer_for_repeat, layer_for_getting_rep_num):
        layer_for_repeat:           shape == (batch_size, vector_dim)
        layer_for_getting_rep_num:  shape == (batch_size, seq_len, ...)
    :return:
        repeated layer_for_repeat, shape == (batch_size, seq_len, vector_dim)
    """
    layer_for_repeat, layer_for_getting_rep_num = inputs
    repeated_vector = RepeatVector(
        n=K.shape(layer_for_getting_rep_num)[1], name='custom_repeat_vector')(layer_for_repeat)
    # shape == (batch_size, seq_len, vector_dim)
    return repeated_vector 
開發者ID:lukalabs,項目名稱:cakechat,代碼行數:19,代碼來源:layers.py

示例6: create_model

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import RepeatVector [as 別名]
def create_model(self, ret_model = False):
	       
		image_model = Sequential()
		image_model.add(Dense(EMBEDDING_DIM, input_dim = 4096, activation='relu'))
		image_model.add(RepeatVector(self.max_length))

		lang_model = Sequential()
		lang_model.add(Embedding(self.vocab_size, 256, input_length=self.max_length))
		lang_model.add(LSTM(256,return_sequences=True))
		lang_model.add(TimeDistributed(Dense(EMBEDDING_DIM)))

		model = Sequential()
		model.add(Merge([image_model, lang_model], mode='concat'))
		model.add(LSTM(1000,return_sequences=False))
		model.add(Dense(self.vocab_size))
		model.add(Activation('softmax'))

		print ("Model created!")

		if(ret_model==True):
		    return model

		model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy'])
		return model 
開發者ID:Shobhit20,項目名稱:Image-Captioning,代碼行數:26,代碼來源:SceneDesc.py

示例7: AlternativeRNNModel

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import RepeatVector [as 別名]
def AlternativeRNNModel(vocab_size, max_len, rnnConfig, model_type):
	embedding_size = rnnConfig['embedding_size']
	if model_type == 'inceptionv3':
		# InceptionV3 outputs a 2048 dimensional vector for each image, which we'll feed to RNN Model
		image_input = Input(shape=(2048,))
	elif model_type == 'vgg16':
		# VGG16 outputs a 4096 dimensional vector for each image, which we'll feed to RNN Model
		image_input = Input(shape=(4096,))
	image_model_1 = Dense(embedding_size, activation='relu')(image_input)
	image_model = RepeatVector(max_len)(image_model_1)

	caption_input = Input(shape=(max_len,))
	# mask_zero: We zero pad inputs to the same length, the zero mask ignores those inputs. E.g. it is an efficiency.
	caption_model_1 = Embedding(vocab_size, embedding_size, mask_zero=True)(caption_input)
	# Since we are going to predict the next word using the previous words
	# (length of previous words changes with every iteration over the caption), we have to set return_sequences = True.
	caption_model_2 = LSTM(rnnConfig['LSTM_units'], return_sequences=True)(caption_model_1)
	# caption_model = TimeDistributed(Dense(embedding_size, activation='relu'))(caption_model_2)
	caption_model = TimeDistributed(Dense(embedding_size))(caption_model_2)

	# Merging the models and creating a softmax classifier
	final_model_1 = concatenate([image_model, caption_model])
	# final_model_2 = LSTM(rnnConfig['LSTM_units'], return_sequences=False)(final_model_1)
	final_model_2 = Bidirectional(LSTM(rnnConfig['LSTM_units'], return_sequences=False))(final_model_1)
	# final_model_3 = Dense(rnnConfig['dense_units'], activation='relu')(final_model_2)
	# final_model = Dense(vocab_size, activation='softmax')(final_model_3)
	final_model = Dense(vocab_size, activation='softmax')(final_model_2)

	model = Model(inputs=[image_input, caption_input], outputs=final_model)
	model.compile(loss='categorical_crossentropy', optimizer='adam')
	# model.compile(loss='categorical_crossentropy', optimizer='rmsprop')
	return model 
開發者ID:dabasajay,項目名稱:Image-Caption-Generator,代碼行數:34,代碼來源:model.py

示例8: create_model

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import RepeatVector [as 別名]
def create_model(self, ret_model = False):
        #base_model = VGG16(weights='imagenet', include_top=False, input_shape = (224, 224, 3))
        #base_model.trainable=False
        image_model = Sequential()
        #image_model.add(base_model)
        #image_model.add(Flatten())
        image_model.add(Dense(EMBEDDING_DIM, input_dim = 4096, activation='relu'))

        image_model.add(RepeatVector(self.max_cap_len))

        lang_model = Sequential()
        lang_model.add(Embedding(self.vocab_size, 256, input_length=self.max_cap_len))
        lang_model.add(LSTM(256,return_sequences=True))
        lang_model.add(TimeDistributed(Dense(EMBEDDING_DIM)))

        model = Sequential()
        model.add(Merge([image_model, lang_model], mode='concat'))
        model.add(LSTM(1000,return_sequences=False))
        model.add(Dense(self.vocab_size))
        model.add(Activation('softmax'))

        print "Model created!"

        if(ret_model==True):
            return model

        model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy'])
        return model 
開發者ID:anuragmishracse,項目名稱:caption_generator,代碼行數:30,代碼來源:caption_generator.py

示例9: _test_one_to_many

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import RepeatVector [as 別名]
def _test_one_to_many(self, keras_major_version):
        params = (
            dict(
                input_dims=[1, 10],
                activation="tanh",
                return_sequences=False,
                output_dim=3,
            ),
        )
        number_of_times = 4
        model = Sequential()
        model.add(RepeatVector(number_of_times, input_shape=(10,)))

        if keras_major_version == 2:
            model.add(
                LSTM(
                    params[0]["output_dim"],
                    input_shape=params[0]["input_dims"],
                    activation=params[0]["activation"],
                    recurrent_activation="sigmoid",
                    return_sequences=True,
                )
            )
        else:
            model.add(
                LSTM(
                    output_dim=params[0]["output_dim"],
                    activation=params[0]["activation"],
                    inner_activation="sigmoid",
                    return_sequences=True,
                )
            )
        relative_error, keras_preds, coreml_preds = simple_model_eval(params, model)
        # print relative_error, '\n', keras_preds, '\n', coreml_preds, '\n'
        for i in range(len(relative_error)):
            self.assertLessEqual(relative_error[i], 0.01) 
開發者ID:apple,項目名稱:coremltools,代碼行數:38,代碼來源:test_recurrent_stress_tests.py

示例10: base_model

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import RepeatVector [as 別名]
def base_model(feature_len=1, after_day=1, input_shape=(20, 1)):
    model = Sequential()

    model.add(LSTM(units=100, return_sequences=False, input_shape=input_shape))
    #model.add(LSTM(units=100, return_sequences=False, input_shape=input_shape))

    # one to many
    model.add(RepeatVector(after_day))
    model.add(LSTM(200, return_sequences=True))
    #model.add(LSTM(50, return_sequences=True))

    model.add(TimeDistributed(Dense(units=feature_len, activation='linear')))

    return model 
開發者ID:kaka-lin,項目名稱:stock-price-predict,代碼行數:16,代碼來源:seq2seq.py

示例11: seq2seq_attention

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import RepeatVector [as 別名]
def seq2seq_attention(feature_len=1, after_day=1, input_shape=(20, 1), time_step=20):
    # Define the inputs of your model with a shape (Tx, feature)
    X = Input(shape=input_shape)

    # Initialize empty list of outputs
    all_outputs = []

    # Encoder: pre-attention LSTM
    encoder = LSTM(units=100, return_state=True, return_sequences=True, name='encoder')
    # Decoder: post-attention LSTM
    decoder = LSTM(units=100, return_state=True, name='decoder')
    # Output
    decoder_output = Dense(units=feature_len, activation='linear', name='output')
    model_output = Reshape((1, feature_len))

    # Attention
    repeator = RepeatVector(time_step)
    concatenator = Concatenate(axis=-1)
    densor = Dense(1, activation = "relu")
    activator = Activation(softmax, name='attention_weights')
    dotor =  Dot(axes = 1)

    encoder_outputs, s, c = encoder(X)

    for t in range(after_day):
        context = one_step_attention(encoder_outputs, s, repeator, concatenator, densor, activator, dotor)

        a, s, c = decoder(context, initial_state=[s, c])

        outputs = decoder_output(a)
        outputs = model_output(outputs)
        all_outputs.append(outputs)

    all_outputs = Lambda(lambda x: K.concatenate(x, axis=1))(all_outputs)
    model = Model(inputs=X, outputs=all_outputs)

    return model 
開發者ID:kaka-lin,項目名稱:stock-price-predict,代碼行數:39,代碼來源:seq2seq_attention_2.py

示例12: seq2seq_attention

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import RepeatVector [as 別名]
def seq2seq_attention(feature_len=1, after_day=1, input_shape=(20, 1), time_step=20):
    # Define the inputs of your model with a shape (Tx, feature)
    X = Input(shape=input_shape)
    s0 = Input(shape=(100, ), name='s0')
    c0 = Input(shape=(100, ), name='c0')
    s = s0
    c = c0

    # Initialize empty list of outputs
    all_outputs = []

    # Encoder: pre-attention LSTM
    encoder = LSTM(units=100, return_state=False, return_sequences=True, name='encoder')
    # Decoder: post-attention LSTM
    decoder = LSTM(units=100, return_state=True, name='decoder')
    # Output
    decoder_output = Dense(units=feature_len, activation='linear', name='output')
    model_output = Reshape((1, feature_len))

    # Attention
    repeator = RepeatVector(time_step)
    concatenator = Concatenate(axis=-1)
    densor = Dense(1, activation = "relu")
    activator = Activation(softmax, name='attention_weights')
    dotor =  Dot(axes = 1)

    encoder_outputs = encoder(X)

    for t in range(after_day):
        context = one_step_attention(encoder_outputs, s, repeator, concatenator, densor, activator, dotor)

        a, s, c = decoder(context, initial_state=[s, c])

        outputs = decoder_output(a)
        outputs = model_output(outputs)
        all_outputs.append(outputs)

    all_outputs = Lambda(lambda x: K.concatenate(x, axis=1))(all_outputs)
    model = Model(inputs=[X, s0, c0], outputs=all_outputs)

    return model 
開發者ID:kaka-lin,項目名稱:stock-price-predict,代碼行數:43,代碼來源:seq2seq_attention.py

示例13: call

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import RepeatVector [as 別名]
def call(self, inputs, mask=None):
        # Import (symbolic) dimensions
        max_atoms = K.shape(inputs)[1]

        # By [farizrahman4u](https://github.com/fchollet/keras/issues/3995)
        ones = layers.Lambda(lambda x: (x * 0 + 1)[:, 0, :], output_shape=lambda s: (s[0], s[2]))(inputs)
        dropped = self.dropout_layer(ones)
        dropped = layers.RepeatVector(max_atoms)(dropped)
        return layers.Lambda(lambda x: x[0] * x[1], output_shape=lambda s: s[0])([inputs, dropped]) 
開發者ID:keiserlab,項目名稱:keras-neural-graph-fingerprint,代碼行數:11,代碼來源:layers.py

示例14: test_repeat_vector

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import RepeatVector [as 別名]
def test_repeat_vector():
    layer_test(layers.RepeatVector,
               kwargs={'n': 3},
               input_shape=(3, 2)) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:6,代碼來源:core_test.py

示例15: test_sequential_model_saving

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import RepeatVector [as 別名]
def test_sequential_model_saving():
    model = Sequential()
    model.add(Dense(2, input_shape=(3,)))
    model.add(RepeatVector(3))
    model.add(TimeDistributed(Dense(3)))
    model.compile(loss=losses.MSE,
                  optimizer=optimizers.RMSprop(lr=0.0001),
                  metrics=[metrics.categorical_accuracy],
                  sample_weight_mode='temporal')
    x = np.random.random((1, 3))
    y = np.random.random((1, 3, 3))
    model.train_on_batch(x, y)

    out = model.predict(x)
    _, fname = tempfile.mkstemp('.h5')
    save_model(model, fname)

    new_model = load_model(fname)
    os.remove(fname)

    out2 = new_model.predict(x)
    assert_allclose(out, out2, atol=1e-05)

    # test that new updates are the same with both models
    x = np.random.random((1, 3))
    y = np.random.random((1, 3, 3))
    model.train_on_batch(x, y)
    new_model.train_on_batch(x, y)
    out = model.predict(x)
    out2 = new_model.predict(x)
    assert_allclose(out, out2, atol=1e-05) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:33,代碼來源:test_model_saving.py


注:本文中的keras.layers.RepeatVector方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。