當前位置: 首頁>>代碼示例>>Python>>正文


Python layers.ReLU方法代碼示例

本文整理匯總了Python中keras.layers.ReLU方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.ReLU方法的具體用法?Python layers.ReLU怎麽用?Python layers.ReLU使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.layers的用法示例。


在下文中一共展示了layers.ReLU方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: emit_Relu6

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import ReLU [as 別名]
def emit_Relu6(self, IR_node, in_scope=False):
        try:
            # Keras == 2.1.6
            from keras.applications.mobilenet import relu6
            str_relu6 = 'keras.applications.mobilenet.relu6'
            code = "{:<15} = layers.Activation({}, name = '{}')({})".format(
                IR_node.variable_name,
                str_relu6,
                IR_node.name,
                self.IR_graph.get_node(IR_node.in_edges[0]).real_variable_name)
            return code

        except:
            # Keras == 2.2.2
            from keras.layers import ReLU
            code = "{:<15} = layers.ReLU(6, name = '{}')({})".format(
                IR_node.variable_name,
                IR_node.name,
                self.IR_graph.get_node(IR_node.in_edges[0]).real_variable_name)
            return code 
開發者ID:microsoft,項目名稱:MMdnn,代碼行數:22,代碼來源:keras2_emitter.py

示例2: shortcut_pool

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import ReLU [as 別名]
def shortcut_pool(inputs, output, filters=256, pool_type='max', shortcut=True):
    """
        ResNet(shortcut連接|skip連接|residual連接), 
        這裏是用shortcut連接. 恒等映射, block+f(block)
        再加上 downsampling實現
        參考: https://github.com/zonetrooper32/VDCNN/blob/keras_version/vdcnn.py
    :param inputs: tensor
    :param output: tensor
    :param filters: int
    :param pool_type: str, 'max'、'k-max' or 'conv' or other
    :param shortcut: boolean
    :return: tensor
    """
    if shortcut:
        conv_2 = Conv1D(filters=filters, kernel_size=1, strides=2, padding='SAME')(inputs)
        conv_2 = BatchNormalization()(conv_2)
        output = downsampling(output, pool_type=pool_type)
        out = Add()([output, conv_2])
    else:
        out = ReLU(inputs)
        out = downsampling(out, pool_type=pool_type)
    if pool_type is not None: # filters翻倍
        out = Conv1D(filters=filters*2, kernel_size=1, strides=1, padding='SAME')(out)
        out = BatchNormalization()(out)
    return out 
開發者ID:yongzhuo,項目名稱:Keras-TextClassification,代碼行數:27,代碼來源:graph.py

示例3: initial_oct_conv_bn_relu

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import ReLU [as 別名]
def initial_oct_conv_bn_relu(ip, filters, kernel_size=(3, 3), strides=(1, 1),
                             alpha=0.5, padding='same', dilation=None, bias=False,
                             activation=True):

    channel_axis = 1 if K.image_data_format() == 'channels_first' else -1

    x_high, x_low = initial_octconv(ip, filters, kernel_size, strides, alpha,
                                    padding, dilation, bias)

    relu = ReLU()
    x_high = BatchNormalization(axis=channel_axis)(x_high)
    if activation:
        x_high = relu(x_high)

    x_low = BatchNormalization(axis=channel_axis)(x_low)
    if activation:
        x_low = relu(x_low)

    return x_high, x_low 
開發者ID:titu1994,項目名稱:keras-octconv,代碼行數:21,代碼來源:octave_conv_block.py

示例4: oct_conv_bn_relu

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import ReLU [as 別名]
def oct_conv_bn_relu(ip_high, ip_low, filters, kernel_size=(3, 3), strides=(1, 1),
                     alpha=0.5, padding='same', dilation=None, bias=False, activation=True):

    channel_axis = 1 if K.image_data_format() == 'channels_first' else -1

    x_high, x_low = octconv_block(ip_high, ip_low, filters, kernel_size, strides, alpha,
                                  padding, dilation, bias)

    relu = ReLU()
    x_high = BatchNormalization(axis=channel_axis)(x_high)
    if activation:
        x_high = relu(x_high)

    x_low = BatchNormalization(axis=channel_axis)(x_low)
    if activation:
        x_low = relu(x_low)

    return x_high, x_low 
開發者ID:titu1994,項目名稱:keras-octconv,代碼行數:20,代碼來源:octave_conv_block.py

示例5: _bottleneck_original

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import ReLU [as 別名]
def _bottleneck_original(ip, filters, strides=(1, 1), downsample_shortcut=False,
                         expansion=4):

    final_filters = int(filters * expansion)

    shortcut = ip

    x = _conv_bn_relu(ip, filters, kernel_size=(1, 1))
    x = _conv_bn_relu(x, filters, kernel_size=(3, 3), strides=strides)
    x = _conv_bn_relu(x, final_filters, kernel_size=(1, 1), activation=False)

    if downsample_shortcut:
        shortcut = _conv_block(shortcut, final_filters, kernel_size=(1, 1),
                               strides=strides)

    x = add([x, shortcut])
    x = ReLU()(x)

    return x 
開發者ID:titu1994,項目名稱:keras-octconv,代碼行數:21,代碼來源:octave_resnet.py

示例6: build_generator

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import ReLU [as 別名]
def build_generator():
    gen_model = Sequential()

    gen_model.add(Dense(input_dim=100, output_dim=2048))
    gen_model.add(ReLU())

    gen_model.add(Dense(256 * 8 * 8))
    gen_model.add(BatchNormalization())
    gen_model.add(ReLU())
    gen_model.add(Reshape((8, 8, 256), input_shape=(256 * 8 * 8,)))
    gen_model.add(UpSampling2D(size=(2, 2)))

    gen_model.add(Conv2D(128, (5, 5), padding='same'))
    gen_model.add(ReLU())

    gen_model.add(UpSampling2D(size=(2, 2)))

    gen_model.add(Conv2D(64, (5, 5), padding='same'))
    gen_model.add(ReLU())

    gen_model.add(UpSampling2D(size=(2, 2)))

    gen_model.add(Conv2D(3, (5, 5), padding='same'))
    gen_model.add(Activation('tanh'))
    return gen_model 
開發者ID:PacktPublishing,項目名稱:Generative-Adversarial-Networks-Projects,代碼行數:27,代碼來源:run.py

示例7: call

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import ReLU [as 別名]
def call(self, x):
        return nn.ReLU(max_value=6.0)(x) 
開發者ID:osmr,項目名稱:imgclsmob,代碼行數:4,代碼來源:common.py

示例8: get_activation_layer

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import ReLU [as 別名]
def get_activation_layer(x,
                         activation,
                         name="activ"):
    """
    Create activation layer from string/function.

    Parameters:
    ----------
    x : keras.backend tensor/variable/symbol
        Input tensor/variable/symbol.
    activation : function or str
        Activation function or name of activation function.
    name : str, default 'activ'
        Block name.

    Returns
    -------
    keras.backend tensor/variable/symbol
        Resulted tensor/variable/symbol.
    """
    assert (activation is not None)
    if isfunction(activation):
        x = activation()(x)
    elif isinstance(activation, str):
        if activation == "relu":
            x = nn.Activation("relu", name=name)(x)
        elif activation == "relu6":
            x = nn.ReLU(max_value=6.0, name=name)(x)
        elif activation == "swish":
            x = swish(x=x, name=name)
        elif activation == "hswish":
            x = HSwish(name=name)(x)
        else:
            raise NotImplementedError()
    else:
        x = activation(x)
    return x 
開發者ID:osmr,項目名稱:imgclsmob,代碼行數:39,代碼來源:common.py

示例9: ResidualBlock

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import ReLU [as 別名]
def ResidualBlock(self, inp, dim_out):
        """Residual Block with instance normalization."""
        x = ZeroPadding2D(padding = 1)(inp)
        x = Conv2D(filters = dim_out, kernel_size=3, strides=1, padding='valid', use_bias = False)(x)
        x = InstanceNormalization(axis = -1)(x)
        x = ReLU()(x)
        x = ZeroPadding2D(padding = 1)(x)
        x = Conv2D(filters = dim_out, kernel_size=3, strides=1, padding='valid', use_bias = False)(x)
        x = InstanceNormalization(axis = -1)(x)
        return Add()([inp, x]) 
開發者ID:hoangthang1607,項目名稱:StarGAN-Keras,代碼行數:12,代碼來源:StarGAN.py

示例10: __init__

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import ReLU [as 別名]
def __init__(self, model):
        super(Keras2Parser, self).__init__()

        # load model files into Keras graph
        if isinstance(model, _string_types):
            try:
                # Keras 2.1.6
                from keras.applications.mobilenet import relu6
                from keras.applications.mobilenet import DepthwiseConv2D
                model = _keras.models.load_model(
                    model,
                    custom_objects={
                        'relu6': _keras.applications.mobilenet.relu6,
                        'DepthwiseConv2D': _keras.applications.mobilenet.DepthwiseConv2D
                    }
                )
            except:
                # Keras. 2.2.2
                import keras.layers as layers
                model = _keras.models.load_model(
                    model,
                    custom_objects={
                        'relu6': layers.ReLU(6, name='relu6'),
                        'DepthwiseConv2D': layers.DepthwiseConv2D
                    }
                )
            self.weight_loaded = True

        elif isinstance(model, tuple):
            model = self._load_model(model[0], model[1])

        else:
            assert False

        # _keras.utils.plot_model(model, "model.png", show_shapes = True)

        # Build network graph
        self.data_format = _keras.backend.image_data_format()
        self.keras_graph = Keras2Graph(model)
        self.keras_graph.build()
        self.lambda_layer_count = 0 
開發者ID:microsoft,項目名稱:MMdnn,代碼行數:43,代碼來源:keras2_parser.py

示例11: create_model

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import ReLU [as 別名]
def create_model(self, hyper_parameters):
        """
            構建神經網絡
        :param hyper_parameters:json,  hyper parameters of network
        :return: tensor, moedl
        """
        super().create_model(hyper_parameters)
        embedding_output = self.word_embedding.output
        embedding_output_spatial = SpatialDropout1D(self.dropout_spatial)(embedding_output)

        # 首先是 region embedding 層
        conv_1 = Conv1D(self.filters[0][0],
                        kernel_size=1,
                        strides=1,
                        padding='SAME',
                        kernel_regularizer=l2(self.l2),
                        bias_regularizer=l2(self.l2),
                        activation=self.activation_conv,
                        )(embedding_output_spatial)
        block = ReLU()(conv_1)

        for filters_block in self.filters:
            for j in range(filters_block[1]-1):
                # conv + short-cut
                block_mid = self.convolutional_block(block, units=filters_block[0])
                block = shortcut_conv(block, block_mid, shortcut=True)
            # 這裏是conv + max-pooling
            block_mid = self.convolutional_block(block, units=filters_block[0])
            block = shortcut_pool(block, block_mid, filters=filters_block[0], pool_type=self.pool_type, shortcut=True)

        block = k_max_pooling(top_k=self.top_k)(block)
        block = Flatten()(block)
        block = Dropout(self.dropout)(block)
        # 全連接層
        # block_fully = Dense(2048, activation='tanh')(block)
        # output = Dense(2048, activation='tanh')(block_fully)
        output = Dense(self.label, activation=self.activate_classify)(block)
        self.model = Model(inputs=self.word_embedding.input, outputs=output)
        self.model.summary(120) 
開發者ID:yongzhuo,項目名稱:Keras-TextClassification,代碼行數:41,代碼來源:graph.py

示例12: convolutional_block

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import ReLU [as 別名]
def convolutional_block(self, inputs, units=256):
        """
            Each convolutional block (see Figure 2) is a sequence of two convolutional layers, 
            each one followed by a temporal BatchNorm (Ioffe and Szegedy, 2015) layer and an ReLU activation. 
            The kernel size of all the temporal convolutions is 3, 
            with padding such that the temporal resolution is preserved 
            (or halved in the case of the convolutional pooling with stride 2, see below). 
        :param inputs: tensor, input
        :param units: int, units
        :return: tensor, result of convolutional block
        """
        x = Conv1D(units,
                    kernel_size=3,
                    padding='SAME',
                    strides=1,
                    kernel_regularizer=l2(self.l2),
                    bias_regularizer=l2(self.l2),
                    activation=self.activation_conv,
                    )(inputs)
        x = BatchNormalization()(x)
        x = ReLU()(x)
        x = Conv1D(units,
                    kernel_size=3,
                    strides=1,
                    padding='SAME',
                    kernel_regularizer=l2(self.l2),
                    bias_regularizer=l2(self.l2),
                    activation=self.activation_conv,
                    )(x)
        x = BatchNormalization()(x)
        x = ReLU()(x)
        return x 
開發者ID:yongzhuo,項目名稱:Keras-TextClassification,代碼行數:34,代碼來源:graph.py

示例13: final_oct_conv_bn_relu

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import ReLU [as 別名]
def final_oct_conv_bn_relu(ip_high, ip_low, filters, kernel_size=(3, 3), strides=(1, 1),
                           padding='same', dilation=None, bias=False, activation=True):

    channel_axis = 1 if K.image_data_format() == 'channels_first' else -1

    x = final_octconv(ip_high, ip_low, filters, kernel_size, strides,
                      padding, dilation, bias)

    x = BatchNormalization(axis=channel_axis)(x)
    if activation:
        x = ReLU()(x)

    return x 
開發者ID:titu1994,項目名稱:keras-octconv,代碼行數:15,代碼來源:octave_conv_block.py

示例14: _conv_bn_relu

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import ReLU [as 別名]
def _conv_bn_relu(ip, filters, kernel_size=(3, 3), strides=(1, 1),
                  padding='same', bias=False, activation=True):

    channel_axis = 1 if K.image_data_format() == 'channels_first' else -1

    x = _conv_block(ip, filters, kernel_size, strides, padding, bias)
    x = BatchNormalization(axis=channel_axis)(x)
    if activation:
        x = ReLU()(x)

    return x 
開發者ID:titu1994,項目名稱:keras-octconv,代碼行數:13,代碼來源:octave_resnet.py

示例15: _octresnet_bottleneck_block

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import ReLU [as 別名]
def _octresnet_bottleneck_block(ip, filters, alpha=0.5, strides=(1, 1),
                                downsample_shortcut=False, first_block=False,
                                expansion=4):

    if first_block:
        x_high_res, x_low_res = initial_oct_conv_bn_relu(ip, filters, kernel_size=(1, 1),
                                                         alpha=alpha)

        x_high, x_low = oct_conv_bn_relu(x_high_res, x_low_res, filters, kernel_size=(3, 3),
                                         strides=strides, alpha=alpha)

    else:
        x_high_res, x_low_res = ip
        x_high, x_low = oct_conv_bn_relu(x_high_res, x_low_res, filters, kernel_size=(1, 1),
                                         alpha=alpha)

        x_high, x_low = oct_conv_bn_relu(x_high, x_low, filters, kernel_size=(3, 3),
                                         strides=strides, alpha=alpha)

    final_out_filters = int(filters * expansion)
    x_high, x_low = oct_conv_bn_relu(x_high, x_low, filters=final_out_filters,
                                     kernel_size=(1, 1), alpha=alpha, activation=False)

    if downsample_shortcut:
        x_high_res, x_low_res = oct_conv_bn_relu(x_high_res, x_low_res,
                                                 final_out_filters, kernel_size=(1, 1),
                                                 strides=strides, alpha=alpha,
                                                 activation=False)

    x_high = add([x_high, x_high_res])
    x_low = add([x_low, x_low_res])

    x_high = ReLU()(x_high)
    x_low = ReLU()(x_low)

    return x_high, x_low 
開發者ID:titu1994,項目名稱:keras-octconv,代碼行數:38,代碼來源:octave_resnet.py


注:本文中的keras.layers.ReLU方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。