當前位置: 首頁>>代碼示例>>Python>>正文


Python layers.Permute方法代碼示例

本文整理匯總了Python中keras.layers.Permute方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.Permute方法的具體用法?Python layers.Permute怎麽用?Python layers.Permute使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.layers的用法示例。


在下文中一共展示了layers.Permute方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: duc

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Permute [as 別名]
def duc(x, factor=8, output_shape=(512, 512, 1)):
    if K.image_data_format() == 'channels_last':
        bn_axis = 3
    else:
        bn_axis = 1
    H, W, c, r = output_shape[0], output_shape[1], output_shape[2], factor
    h = H / r
    w = W / r
    x = Conv2D(
            c*r*r,
            (3, 3),
            padding='same',
            name='conv_duc_%s'%factor)(x)
    x = BatchNormalization(axis=bn_axis,name='bn_duc_%s'%factor)(x)
    x = Activation('relu')(x)
    x = Permute((3, 1, 2))(x)
    x = Reshape((c, r, r, h, w))(x)
    x = Permute((1, 4, 2, 5, 3))(x)
    x = Reshape((c, H, W))(x)
    x = Permute((2, 3, 1))(x)

    return x


# interpolation 
開發者ID:dhkim0225,項目名稱:keras-image-segmentation,代碼行數:27,代碼來源:pspnet.py

示例2: softmax_by_row

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Permute [as 別名]
def softmax_by_row(self, z: typing.Any) -> tuple:
        """Conduct softmax on each dimension across the four gates."""

        # z_transform: [B, U, 4]
        z_transform = Permute((2, 1))(Reshape((4, self._units))(z))
        size = [-1, 1, -1]
        # Perform softmax on each slice
        for i in range(0, self._units):
            begin = [0, i, 0]
            # z_slice: [B, 1, 4]
            z_slice = tf.slice(z_transform, begin, size)
            if i == 0:
                z_s = tf.nn.softmax(z_slice)
            else:
                z_s = tf.concat([z_s, tf.nn.softmax(z_slice)], 1)
        # zi, zl, zt, zd: [B, U]
        zi, zl, zt, zd = tf.unstack(z_s, axis=2)
        return zi, zl, zt, zd 
開發者ID:NTMC-Community,項目名稱:MatchZoo,代碼行數:20,代碼來源:spatial_gru.py

示例3: interp_net

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Permute [as 別名]
def interp_net():
    if gpu_num > 1:
        dev = "/cpu:0"
    else:
        dev = "/gpu:0"
    with tf.device(dev):
        main_input = Input(shape=(4*num_features, timestamp), name='input')
        sci = single_channel_interp(ref_points, hours_look_ahead)
        cci = cross_channel_interp()
        interp = cci(sci(main_input))
        reconst = cci(sci(main_input, reconstruction=True),
                      reconstruction=True)
        aux_output = Lambda(lambda x: x, name='aux_output')(reconst)
        z = Permute((2, 1))(interp)
        z = GRU(hid, activation='tanh', recurrent_dropout=0.2, dropout=0.2)(z)
        main_output = Dense(1, activation='sigmoid', name='main_output')(z)
        orig_model = Model([main_input], [main_output, aux_output])
    if gpu_num > 1:
        model = multi_gpu_model(orig_model, gpus=gpu_num)
    else:
        model = orig_model
    print(orig_model.summary())
    return model 
開發者ID:mlds-lab,項目名稱:interp-net,代碼行數:25,代碼來源:multivariate_example.py

示例4: softmax

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Permute [as 別名]
def softmax(x, restore_shape=True):
    """
    Softmax activation for a tensor x. No need to unroll the input first.
    :param x: x is a tensor with shape (None, channels, h, w)
    :param restore_shape: if False, output is returned unrolled (None, h * w, channels)
    :return: softmax activation of tensor x
    """
    _, c, h, w = x._keras_shape
    x = Permute(dims=(2, 3, 1))(x)
    x = Reshape(target_shape=(h * w, c))(x)

    x = Activation('softmax')(x)

    if restore_shape:
        x = Reshape(target_shape=(h, w, c))(x)
        x = Permute(dims=(3, 1, 2))(x)

    return x 
開發者ID:DavideA,項目名稱:deeplabv2-keras,代碼行數:20,代碼來源:utils.py

示例5: DUC

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Permute [as 別名]
def DUC(factor=(8, 8)):

    if factor[0] != factor[1]:
        raise ValueError('DUC upconvolution support only equal factors, '
                         'got {}'.format(factor))
    factor = factor[0]

    def layer(input_tensor):

        h, w, c = int_shape(input_tensor)[1:]
        H = h * factor
        W = w * factor

        x = Conv2DBlock(c*factor**2, (1,1),
                        padding='same',
                        name='duc_{}'.format(factor))(input_tensor)
        x = Permute((3, 1, 2))(x)
        x = Reshape((c, factor, factor, h, w))(x)
        x = Permute((1, 4, 2, 5, 3))(x)
        x = Reshape((c, H, W))(x)
        x = Permute((2, 3, 1))(x)
        return x
    return layer 
開發者ID:SpaceNetChallenge,項目名稱:SpaceNet_Off_Nadir_Solutions,代碼行數:25,代碼來源:blocks.py

示例6: model_definition

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Permute [as 別名]
def model_definition():
        """ Keras RNetwork for MTCNN """
        input_ = Input(shape=(24, 24, 3))
        var_x = Conv2D(28, (3, 3), strides=1, padding='valid', name='conv1')(input_)
        var_x = PReLU(shared_axes=[1, 2], name='prelu1')(var_x)
        var_x = MaxPool2D(pool_size=3, strides=2, padding='same')(var_x)

        var_x = Conv2D(48, (3, 3), strides=1, padding='valid', name='conv2')(var_x)
        var_x = PReLU(shared_axes=[1, 2], name='prelu2')(var_x)
        var_x = MaxPool2D(pool_size=3, strides=2)(var_x)

        var_x = Conv2D(64, (2, 2), strides=1, padding='valid', name='conv3')(var_x)
        var_x = PReLU(shared_axes=[1, 2], name='prelu3')(var_x)
        var_x = Permute((3, 2, 1))(var_x)
        var_x = Flatten()(var_x)
        var_x = Dense(128, name='conv4')(var_x)
        var_x = PReLU(name='prelu4')(var_x)
        classifier = Dense(2, activation='softmax', name='conv5-1')(var_x)
        bbox_regress = Dense(4, name='conv5-2')(var_x)
        return [input_], [classifier, bbox_regress] 
開發者ID:deepfakes,項目名稱:faceswap,代碼行數:22,代碼來源:mtcnn.py

示例7: create_Kao_Onet

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Permute [as 別名]
def create_Kao_Onet( weight_path = 'model48.h5'):
    input = Input(shape = [48,48,3])
    x = Conv2D(32, (3, 3), strides=1, padding='valid', name='conv1')(input)
    x = PReLU(shared_axes=[1,2],name='prelu1')(x)
    x = MaxPool2D(pool_size=3, strides=2, padding='same')(x)
    x = Conv2D(64, (3, 3), strides=1, padding='valid', name='conv2')(x)
    x = PReLU(shared_axes=[1,2],name='prelu2')(x)
    x = MaxPool2D(pool_size=3, strides=2)(x)
    x = Conv2D(64, (3, 3), strides=1, padding='valid', name='conv3')(x)
    x = PReLU(shared_axes=[1,2],name='prelu3')(x)
    x = MaxPool2D(pool_size=2)(x)
    x = Conv2D(128, (2, 2), strides=1, padding='valid', name='conv4')(x)
    x = PReLU(shared_axes=[1,2],name='prelu4')(x)
    x = Permute((3,2,1))(x)
    x = Flatten()(x)
    x = Dense(256, name='conv5') (x)
    x = PReLU(name='prelu5')(x)

    classifier = Dense(2, activation='softmax',name='conv6-1')(x)
    bbox_regress = Dense(4,name='conv6-2')(x)
    landmark_regress = Dense(10,name='conv6-3')(x)
    model = Model([input], [classifier, bbox_regress, landmark_regress])
    model.load_weights(weight_path, by_name=True)

    return model 
開發者ID:wotchin,項目名稱:SmooFaceEngine,代碼行數:27,代碼來源:mtcnn_model.py

示例8: create_Kao_Rnet

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Permute [as 別名]
def create_Kao_Rnet (weight_path = 'model24.h5'):
    input = Input(shape=[24, 24, 3])  # change this shape to [None,None,3] to enable arbitraty shape input
    x = Conv2D(28, (3, 3), strides=1, padding='valid', name='conv1')(input)
    x = PReLU(shared_axes=[1, 2], name='prelu1')(x)
    x = MaxPool2D(pool_size=3,strides=2, padding='same')(x)

    x = Conv2D(48, (3, 3), strides=1, padding='valid', name='conv2')(x)
    x = PReLU(shared_axes=[1, 2], name='prelu2')(x)
    x = MaxPool2D(pool_size=3, strides=2)(x)

    x = Conv2D(64, (2, 2), strides=1, padding='valid', name='conv3')(x)
    x = PReLU(shared_axes=[1, 2], name='prelu3')(x)
    x = Permute((3, 2, 1))(x)
    x = Flatten()(x)
    x = Dense(128, name='conv4')(x)
    x = PReLU( name='prelu4')(x)
    classifier = Dense(2, activation='softmax', name='conv5-1')(x)
    bbox_regress = Dense(4, name='conv5-2')(x)
    model = Model([input], [classifier, bbox_regress])
    model.load_weights(weight_path, by_name=True)
    return model 
開發者ID:wotchin,項目名稱:SmooFaceEngine,代碼行數:23,代碼來源:mtcnn_model.py

示例9: softmax

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Permute [as 別名]
def softmax(x, restore_shape=True):
    """
    Softmax activation for a tensor x. No need to unroll the input first.

    :param x: x is a tensor with shape (None, channels, h, w)
    :param restore_shape: if False, output is returned unrolled (None, h * w, channels)
    :return: softmax activation of tensor x
    """
    _, c, h, w = x._keras_shape
    x = Permute(dims=(2, 3, 1))(x)
    x = Reshape(target_shape=(h * w, c))(x)

    x = Activation('softmax')(x)

    if restore_shape:
        x = Reshape(target_shape=(h, w, c))(x)
        x = Permute(dims=(3, 1, 2))(x)

    return x 
開發者ID:DavideA,項目名稱:dilation-keras,代碼行數:21,代碼來源:utils.py

示例10: build_model

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Permute [as 別名]
def build_model(state_size, num_actions):
    input_shape = (4,) + state_size
    model = Sequential()
    if K.image_dim_ordering() == 'tf':
        # (width, height, channels)
        model.add(Permute((2, 3, 1), input_shape=input_shape))
    elif K.image_dim_ordering() == 'th':
        # (channels, width, height)
        model.add(Permute((1, 2, 3), input_shape=input_shape))
    else:
        raise RuntimeError('Unknown image_dim_ordering.')
    model.add(Convolution2D(32, 8, 8, subsample=(4, 4)))
    model.add(Activation('relu'))
    model.add(Convolution2D(64, 4, 4, subsample=(2, 2)))
    model.add(Activation('relu'))
    model.add(Convolution2D(64, 3, 3, subsample=(1, 1)))
    model.add(Activation('relu'))
    model.add(Flatten())
    model.add(Dense(512))
    model.add(Activation('relu'))
    model.add(Dense(num_actions))
    model.add(Activation('linear'))
    print(model.summary())
    return model 
開發者ID:PacktPublishing,項目名稱:Deep-Learning-Quick-Reference,代碼行數:26,代碼來源:dqn_breakout.py

示例11: channel_shuffle

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Permute [as 別名]
def channel_shuffle(self, x):
        n, h, w, c = x.shape.as_list()
        x_reshaped = layers.Reshape([h, w, self.groups, int(c // self.groups)])(x)
        x_transposed = layers.Permute((1, 2, 4, 3))(x_reshaped)
        output = layers.Reshape([h, w, c])(x_transposed)
        return output 
開發者ID:JACKYLUO1991,項目名稱:Face-skin-hair-segmentaiton-and-skin-color-evaluation,代碼行數:8,代碼來源:lednet.py

示例12: attention_temporal

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Permute [as 別名]
def attention_temporal(self, input_data, sequence_length):
        """
        A temporal attention layer
        :param input_data: Network input
        :param sequence_length: Length of the input sequence
        :return: The output of attention layer
        """
        a = Permute((2, 1))(input_data)
        a = Dense(sequence_length, activation='sigmoid')(a)
        a_probs = Permute((2, 1))(a)
        output_attention_mul = Multiply()([input_data, a_probs])
        return output_attention_mul 
開發者ID:aras62,項目名稱:PIEPredict,代碼行數:14,代碼來源:pie_predict.py

示例13: squeeze_excite_block

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Permute [as 別名]
def squeeze_excite_block(input, ratio=16):
    ''' Create a channel-wise squeeze-excite block

    Args:
        input: input tensor
        filters: number of output filters

    Returns: a keras tensor

    References
    -   [Squeeze and Excitation Networks](https://arxiv.org/abs/1709.01507)
    '''
    init = input
    channel_axis = 1 if K.image_data_format() == "channels_first" else -1
    filters = init._keras_shape[channel_axis]
    se_shape = (1, 1, filters)

    se = GlobalAveragePooling2D()(init)
    se = Reshape(se_shape)(se)
    se = Dense(filters // ratio, activation='relu', kernel_initializer='he_normal', use_bias=False)(se)
    se = Dense(filters, activation='sigmoid', kernel_initializer='he_normal', use_bias=False)(se)

    if K.image_data_format() == 'channels_first':
        se = Permute((3, 1, 2))(se)

    x = multiply([init, se])
    return x 
開發者ID:titu1994,項目名稱:keras-squeeze-excite-network,代碼行數:29,代碼來源:se.py

示例14: squeeze_excite_block

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Permute [as 別名]
def squeeze_excite_block(input_tensor, ratio=16):
    """ Create a channel-wise squeeze-excite block

    Args:
        input_tensor: input Keras tensor
        ratio: number of output filters

    Returns: a Keras tensor

    References
    -   [Squeeze and Excitation Networks](https://arxiv.org/abs/1709.01507)
    """
    init = input_tensor
    channel_axis = 1 if K.image_data_format() == "channels_first" else -1
    filters = _tensor_shape(init)[channel_axis]
    se_shape = (1, 1, filters)

    se = GlobalAveragePooling2D()(init)
    se = Reshape(se_shape)(se)
    se = Dense(filters // ratio, activation='relu', kernel_initializer='he_normal', use_bias=False)(se)
    se = Dense(filters, activation='sigmoid', kernel_initializer='he_normal', use_bias=False)(se)

    if K.image_data_format() == 'channels_first':
        se = Permute((3, 1, 2))(se)

    x = multiply([init, se])
    return x 
開發者ID:titu1994,項目名稱:keras-squeeze-excite-network,代碼行數:29,代碼來源:se.py

示例15: create_Rnet

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Permute [as 別名]
def create_Rnet(weight_path):
    input = Input(shape=[24, 24, 3])
    # 24,24,3 -> 11,11,28
    x = Conv2D(28, (3, 3), strides=1, padding='valid', name='conv1')(input)
    x = PReLU(shared_axes=[1, 2], name='prelu1')(x)
    x = MaxPool2D(pool_size=3,strides=2, padding='same')(x)

    # 11,11,28 -> 4,4,48
    x = Conv2D(48, (3, 3), strides=1, padding='valid', name='conv2')(x)
    x = PReLU(shared_axes=[1, 2], name='prelu2')(x)
    x = MaxPool2D(pool_size=3, strides=2)(x)

    # 4,4,48 -> 3,3,64
    x = Conv2D(64, (2, 2), strides=1, padding='valid', name='conv3')(x)
    x = PReLU(shared_axes=[1, 2], name='prelu3')(x)
    # 3,3,64 -> 64,3,3
    x = Permute((3, 2, 1))(x)
    x = Flatten()(x)
    # 576 -> 128
    x = Dense(128, name='conv4')(x)
    x = PReLU( name='prelu4')(x)
    # 128 -> 2 128 -> 4
    classifier = Dense(2, activation='softmax', name='conv5-1')(x)
    bbox_regress = Dense(4, name='conv5-2')(x)
    model = Model([input], [classifier, bbox_regress])
    model.load_weights(weight_path, by_name=True)
    return model

#-----------------------------#
#   mtcnn的第三段
#   精修框並獲得五個點
#-----------------------------# 
開發者ID:bubbliiiing,項目名稱:keras-face-recognition,代碼行數:34,代碼來源:mtcnn.py


注:本文中的keras.layers.Permute方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。