當前位置: 首頁>>代碼示例>>Python>>正文


Python layers.PReLU方法代碼示例

本文整理匯總了Python中keras.layers.PReLU方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.PReLU方法的具體用法?Python layers.PReLU怎麽用?Python layers.PReLU使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.layers的用法示例。


在下文中一共展示了layers.PReLU方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: CapsuleNet

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import PReLU [as 別名]
def CapsuleNet(n_capsule = 10, n_routings = 5, capsule_dim = 16,
     n_recurrent=100, dropout_rate=0.2, l2_penalty=0.0001):
    K.clear_session()

    inputs = Input(shape=(170,))
    x = Embedding(21099, 300,  trainable=True)(inputs)        
    x = SpatialDropout1D(dropout_rate)(x)
    x = Bidirectional(
        CuDNNGRU(n_recurrent, return_sequences=True,
                 kernel_regularizer=l2(l2_penalty),
                 recurrent_regularizer=l2(l2_penalty)))(x)
    x = PReLU()(x)
    x = Capsule(
        num_capsule=n_capsule, dim_capsule=capsule_dim,
        routings=n_routings, share_weights=True)(x)
    x = Flatten(name = 'concatenate')(x)
    x = Dropout(dropout_rate)(x)
#     fc = Dense(128, activation='sigmoid')(x)
    outputs = Dense(6, activation='softmax')(x)
    model = Model(inputs=inputs, outputs=outputs)
    model.compile(loss='categorical_crossentropy', optimizer='nadam', metrics=['accuracy'])
    return model 
開發者ID:WeavingWong,項目名稱:DigiX_HuaWei_Population_Age_Attribution_Predict,代碼行數:24,代碼來源:models.py

示例2: CapsuleNet_v2

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import PReLU [as 別名]
def CapsuleNet_v2(n_capsule = 10, n_routings = 5, capsule_dim = 16,
     n_recurrent=100, dropout_rate=0.2, l2_penalty=0.0001):
    K.clear_session()

    inputs = Input(shape=(200,))
    x = Embedding(20000, 300,  trainable=True)(inputs)        
    x = SpatialDropout1D(dropout_rate)(x)
    x = Bidirectional(
        CuDNNGRU(n_recurrent, return_sequences=True,
                 kernel_regularizer=l2(l2_penalty),
                 recurrent_regularizer=l2(l2_penalty)))(x)
    x = PReLU()(x)
    x = Capsule(
        num_capsule=n_capsule, dim_capsule=capsule_dim,
        routings=n_routings, share_weights=True)(x)
    x = Flatten(name = 'concatenate')(x)
    x = Dropout(dropout_rate)(x)
#     fc = Dense(128, activation='sigmoid')(x)
    outputs = Dense(6, activation='softmax')(x)
    model = Model(inputs=inputs, outputs=outputs)
    model.compile(loss='categorical_crossentropy', optimizer='nadam', metrics=['accuracy'])
    return model 
開發者ID:WeavingWong,項目名稱:DigiX_HuaWei_Population_Age_Attribution_Predict,代碼行數:24,代碼來源:models.py

示例3: model_definition

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import PReLU [as 別名]
def model_definition():
        """ Keras RNetwork for MTCNN """
        input_ = Input(shape=(24, 24, 3))
        var_x = Conv2D(28, (3, 3), strides=1, padding='valid', name='conv1')(input_)
        var_x = PReLU(shared_axes=[1, 2], name='prelu1')(var_x)
        var_x = MaxPool2D(pool_size=3, strides=2, padding='same')(var_x)

        var_x = Conv2D(48, (3, 3), strides=1, padding='valid', name='conv2')(var_x)
        var_x = PReLU(shared_axes=[1, 2], name='prelu2')(var_x)
        var_x = MaxPool2D(pool_size=3, strides=2)(var_x)

        var_x = Conv2D(64, (2, 2), strides=1, padding='valid', name='conv3')(var_x)
        var_x = PReLU(shared_axes=[1, 2], name='prelu3')(var_x)
        var_x = Permute((3, 2, 1))(var_x)
        var_x = Flatten()(var_x)
        var_x = Dense(128, name='conv4')(var_x)
        var_x = PReLU(name='prelu4')(var_x)
        classifier = Dense(2, activation='softmax', name='conv5-1')(var_x)
        bbox_regress = Dense(4, name='conv5-2')(var_x)
        return [input_], [classifier, bbox_regress] 
開發者ID:deepfakes,項目名稱:faceswap,代碼行數:22,代碼來源:mtcnn.py

示例4: get_srresnet_model

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import PReLU [as 別名]
def get_srresnet_model(input_channel_num=3, feature_dim=64, resunit_num=16):
    def _residual_block(inputs):
        x = Conv2D(feature_dim, (3, 3), padding="same", kernel_initializer="he_normal")(inputs)
        x = BatchNormalization()(x)
        x = PReLU(shared_axes=[1, 2])(x)
        x = Conv2D(feature_dim, (3, 3), padding="same", kernel_initializer="he_normal")(x)
        x = BatchNormalization()(x)
        m = Add()([x, inputs])

        return m

    inputs = Input(shape=(None, None, input_channel_num))
    x = Conv2D(feature_dim, (3, 3), padding="same", kernel_initializer="he_normal")(inputs)
    x = PReLU(shared_axes=[1, 2])(x)
    x0 = x

    for i in range(resunit_num):
        x = _residual_block(x)

    x = Conv2D(feature_dim, (3, 3), padding="same", kernel_initializer="he_normal")(x)
    x = BatchNormalization()(x)
    x = Add()([x, x0])
    x = Conv2D(input_channel_num, (3, 3), padding="same", kernel_initializer="he_normal")(x)
    model = Model(inputs=inputs, outputs=x)

    return model


# UNet: code from https://github.com/pietz/unet-keras 
開發者ID:zxq2233,項目名稱:n2n-watermark-remove,代碼行數:31,代碼來源:model.py

示例5: emit_PRelu

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import PReLU [as 別名]
def emit_PRelu(self, IR_node, in_scope=False):
        if in_scope:
            raise NotImplementedError
        else:
            code = "{:<15} = layers.PReLU(name='{}')({})".format(
                IR_node.variable_name,
                IR_node.name,
                self.parent_variable_name(IR_node)
            )
            return code 
開發者ID:microsoft,項目名稱:MMdnn,代碼行數:12,代碼來源:keras2_emitter.py

示例6: ResCNN

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import PReLU [as 別名]
def ResCNN(self, x):
        """
            repeat of two conv
        :param x: tensor, input shape
        :return: tensor, result of two conv of resnet
        """
        # pre-activation
        # x = PReLU()(x)
        x = Conv1D(self.filters_num,
                                kernel_size=1,
                                padding='SAME',
                                kernel_regularizer=l2(self.l2),
                                bias_regularizer=l2(self.l2),
                                activation=self.activation_conv,
                                )(x)
        x = BatchNormalization()(x)
        #x = PReLU()(x)
        x = Conv1D(self.filters_num,
                                kernel_size=1,
                                padding='SAME',
                                kernel_regularizer=l2(self.l2),
                                bias_regularizer=l2(self.l2),
                                activation=self.activation_conv,
                                )(x)
        x = BatchNormalization()(x)
        # x = Dropout(self.dropout)(x)
        x = PReLU()(x)
        return x 
開發者ID:yongzhuo,項目名稱:Keras-TextClassification,代碼行數:30,代碼來源:graph.py

示例7: __init__

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import PReLU [as 別名]
def __init__(self):
        super(PReLUNet, self).__init__()
        self.prelu = nn.PReLU(3) 
開發者ID:gzuidhof,項目名稱:nn-transfer,代碼行數:5,代碼來源:test_layers.py

示例8: test_prelu

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import PReLU [as 別名]
def test_prelu(self):
        keras_model = Sequential()
        keras_model.add(PReLU(input_shape=(3, 32, 32), shared_axes=(2, 3),
                              name='prelu'))
        keras_model.compile(loss=keras.losses.categorical_crossentropy,
                            optimizer=keras.optimizers.SGD())

        pytorch_model = PReLUNet()

        self.transfer(keras_model, pytorch_model)
        self.assertEqualPrediction(keras_model, pytorch_model, self.test_data) 
開發者ID:gzuidhof,項目名稱:nn-transfer,代碼行數:13,代碼來源:test_layers.py

示例9: test_prelu

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import PReLU [as 別名]
def test_prelu():
    layer_test(layers.PReLU, kwargs={},
               input_shape=(2, 3, 4)) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:5,代碼來源:advanced_activations_test.py

示例10: test_prelu_share

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import PReLU [as 別名]
def test_prelu_share():
    layer_test(layers.PReLU, kwargs={'shared_axes': 1},
               input_shape=(2, 3, 4)) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:5,代碼來源:advanced_activations_test.py

示例11: activate

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import PReLU [as 別名]
def activate(self, layer):
        """ activate layer with given activation function
            :param layer: the input layer
            :return: the layer after activation
        """
        if self.activ == 'lrelu':
            return layers.LeakyReLU(0.2)(layer)
        elif self.activ == 'prelu':
            return layers.PReLU()(layer)
        else:
            return Activation(self.activ)(layer) 
開發者ID:CongBao,項目名稱:ImageEnhancer,代碼行數:13,代碼來源:enhancer_gan.py

示例12: activate

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import PReLU [as 別名]
def activate(self, layer):
        """ activate layer with given activation function
            :param layer: the input layer
            :return: the layer after activation
        """
        if self.activ == 'lrelu':
            return layers.LeakyReLU()(layer)
        elif self.activ == 'prelu':
            return layers.PReLU()(layer)
        else:
            return Activation(self.activ)(layer) 
開發者ID:CongBao,項目名稱:ImageEnhancer,代碼行數:13,代碼來源:enhancer.py

示例13: RnnVersion1

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import PReLU [as 別名]
def RnnVersion1( n_recurrent=50, n_filters=30, dropout_rate=0.2, l2_penalty=0.0001,n_capsule = 10, n_routings = 5, capsule_dim = 16):
    K.clear_session()
    def conv_block(x, n, kernel_size):
        x = Conv1D(n, kernel_size, activation='relu') (x)
        x = Conv1D(n_filters, kernel_size, activation='relu') (x)
        x_att = AttentionWithContext()(x)
        x_avg = GlobalAveragePooling1D()(x)
        x_max = GlobalMaxPooling1D()(x)
        return concatenate([x_att, x_avg, x_max])  
    def att_max_avg_pooling(x):
        x_att = AttentionWithContext()(x)
        x_avg = GlobalAveragePooling1D()(x)
        x_max = GlobalMaxPooling1D()(x)
        return concatenate([x_att, x_avg, x_max])

    inputs = Input(shape=(170,))
    emb = Embedding(21099, 300,  trainable=True)(inputs)

    # model 0
    x0 = BatchNormalization()(emb)
    x0 = SpatialDropout1D(dropout_rate)(x0)
    
    x0 = Bidirectional(
        CuDNNGRU(n_recurrent, return_sequences=True,
                 kernel_regularizer=l2(l2_penalty),
                 recurrent_regularizer=l2(l2_penalty)))(x0)
    x0 = Conv1D(n_filters, kernel_size=3)(x0)
    x0 = PReLU()(x0)
#     x0 = Dropout(dropout_rate)(x0)
    x0 = att_max_avg_pooling(x0)

    # model 1
    x1 = SpatialDropout1D(dropout_rate)(emb)
    x1 = Bidirectional(
        CuDNNGRU(2*n_recurrent, return_sequences=True,
                 kernel_regularizer=l2(l2_penalty),
                 recurrent_regularizer=l2(l2_penalty)))(x1)
    x1 = Conv1D(2*n_filters, kernel_size=2)(x1)
    x1 = PReLU()(x1)
#     x1 = Dropout(dropout_rate)(x1)
    x1 = att_max_avg_pooling(x1)

    x = concatenate([x0, x1],name='concatenate')
    
#     fc = Dense(128, activation='sigmoid')(x)
    outputs = Dense(6, activation='softmax')(x)#   , kernel_regularizer=l2(l2_penalty), activity_regularizer=l2(l2_penalty)
    model = Model(inputs=inputs, outputs=outputs)
    model.compile(loss='categorical_crossentropy', optimizer='Nadam',metrics =['accuracy'])
    return model 
開發者ID:WeavingWong,項目名稱:DigiX_HuaWei_Population_Age_Attribution_Predict,代碼行數:51,代碼來源:models.py

示例14: RnnVersion1

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import PReLU [as 別名]
def RnnVersion1( n_recurrent=50, n_filters=30, dropout_rate=0.2, l2_penalty=0.0001,n_capsule = 10, n_routings = 5, capsule_dim = 16):
    K.clear_session()
    def conv_block(x, n, kernel_size):
        x = Conv1D(n, kernel_size, activation='relu') (x)
        x = Conv1D(n_filters, kernel_size, activation='relu') (x)
        x_att = AttentionWithContext()(x)
        x_avg = GlobalAveragePooling1D()(x)
        x_max = GlobalMaxPooling1D()(x)
        return concatenate([x_att, x_avg, x_max])  
    def att_max_avg_pooling(x):
        x_att = AttentionWithContext()(x)
        x_avg = GlobalAveragePooling1D()(x)
        x_max = GlobalMaxPooling1D()(x)
        return concatenate([x_att, x_avg, x_max])

    inputs = Input(shape=(100,))
    emb = Embedding(9399, 300,  trainable=True)(inputs)

    # model 0
    x0 = BatchNormalization()(emb)
    x0 = SpatialDropout1D(dropout_rate)(x0)
    
    x0 = Bidirectional(
        CuDNNGRU(n_recurrent, return_sequences=True,
                 kernel_regularizer=l2(l2_penalty),
                 recurrent_regularizer=l2(l2_penalty)))(x0)
    x0 = Conv1D(n_filters, kernel_size=3)(x0)
    x0 = PReLU()(x0)
#     x0 = Dropout(dropout_rate)(x0)
    x0 = att_max_avg_pooling(x0)

    # model 1
    x1 = SpatialDropout1D(dropout_rate)(emb)
    x1 = Bidirectional(
        CuDNNGRU(2*n_recurrent, return_sequences=True,
                 kernel_regularizer=l2(l2_penalty),
                 recurrent_regularizer=l2(l2_penalty)))(x1)
    x1 = Conv1D(2*n_filters, kernel_size=2)(x1)
    x1 = PReLU()(x1)
#     x1 = Dropout(dropout_rate)(x1)
    x1 = att_max_avg_pooling(x1)

    x = concatenate([x0, x1],name='concatenate')
    
    fc = Dense(128, activation='relu')(x)
    outputs = Dense(6, activation='softmax')(fc)#   , kernel_regularizer=l2(l2_penalty), activity_regularizer=l2(l2_penalty)
    model = Model(inputs=inputs, outputs=outputs)
    model.compile(loss='categorical_crossentropy', optimizer='Nadam',metrics =['accuracy'])
    return model 
開發者ID:WeavingWong,項目名稱:DigiX_HuaWei_Population_Age_Attribution_Predict,代碼行數:51,代碼來源:rnn_feature.py

示例15: header_code

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import PReLU [as 別名]
def header_code(self):
        return """import keras
from keras.models import Model
from keras import layers
import keras.backend as K
import numpy as np
from keras.layers.core import Lambda
import tensorflow as tf


weights_dict = dict()
def load_weights_from_file(weight_file):
    try:
        weights_dict = np.load(weight_file, allow_pickle=True).item()
    except:
        weights_dict = np.load(weight_file, allow_pickle=True, encoding='bytes').item()

    return weights_dict


def set_layer_weights(model, weights_dict):
    for layer in model.layers:
        if layer.name in weights_dict:
            cur_dict = weights_dict[layer.name]
            current_layer_parameters = list()
            if layer.__class__.__name__ == "BatchNormalization":
                if 'scale' in cur_dict:
                    current_layer_parameters.append(cur_dict['scale'])
                if 'bias' in cur_dict:
                    current_layer_parameters.append(cur_dict['bias'])
                current_layer_parameters.extend([cur_dict['mean'], cur_dict['var']])
            elif layer.__class__.__name__ == "Scale":
                if 'scale' in cur_dict:
                    current_layer_parameters.append(cur_dict['scale'])
                if 'bias' in cur_dict:
                    current_layer_parameters.append(cur_dict['bias'])
            elif layer.__class__.__name__ == "SeparableConv2D":
                current_layer_parameters = [cur_dict['depthwise_filter'], cur_dict['pointwise_filter']]
                if 'bias' in cur_dict:
                    current_layer_parameters.append(cur_dict['bias'])
            elif layer.__class__.__name__ == "Embedding":
                current_layer_parameters.append(cur_dict['weights'])
            elif layer.__class__.__name__ == "PReLU":
                gamma =  np.ones(list(layer.input_shape[1:]))*cur_dict['gamma']
                current_layer_parameters.append(gamma)
            else:
                # rot 
                if 'weights' in cur_dict:
                    current_layer_parameters = [cur_dict['weights']]
                if 'bias' in cur_dict:
                    current_layer_parameters.append(cur_dict['bias'])
            model.get_layer(layer.name).set_weights(current_layer_parameters)

    return model


def KitModel(weight_file = None):
    global weights_dict
    weights_dict = load_weights_from_file(weight_file) if not weight_file == None else None
        """ 
開發者ID:microsoft,項目名稱:MMdnn,代碼行數:62,代碼來源:keras2_emitter.py


注:本文中的keras.layers.PReLU方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。