當前位置: 首頁>>代碼示例>>Python>>正文


Python layers.Multiply方法代碼示例

本文整理匯總了Python中keras.layers.Multiply方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.Multiply方法的具體用法?Python layers.Multiply怎麽用?Python layers.Multiply使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.layers的用法示例。


在下文中一共展示了layers.Multiply方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_model

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Multiply [as 別名]
def get_model(num_users, num_items, latent_dim, regs=[0,0]):
    user_input = Input(shape=(1,), dtype='int32', name='user_input')
    item_input = Input(shape=(1,), dtype='int32', name='item_input')
    
    MF_Embedding_User = Embedding(input_dim=num_users, output_dim=latent_dim, name='user_embedding',
                                  embeddings_regularizer = l2(regs[0]), input_length=1)
    MF_Embedding_Item = Embedding(input_dim=num_items, output_dim=latent_dim, name='item_embedding',
                                  embeddings_regularizer = l2(regs[1]), input_length=1)
    
    user_latent = Flatten()(MF_Embedding_User(user_input))
    item_latent = Flatten()(MF_Embedding_Item(item_input))
    
    predict_vector = Multiply()([user_latent, item_latent])
    prediction = Dense(1, activation='sigmoid', kernel_initializer='lecun_uniform', name = 'prediction')(predict_vector)
    model = Model(inputs=[user_input, item_input], outputs=prediction)
    
    return model 
開發者ID:wyl6,項目名稱:Recommender-Systems-Samples,代碼行數:19,代碼來源:GMF.py

示例2: _squeeze

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Multiply [as 別名]
def _squeeze(self, inputs):
        """Squeeze and Excitation.
        This function defines a squeeze structure.

        # Arguments
            inputs: Tensor, input tensor of conv layer.
        """
        input_channels = int(inputs.shape[-1])

        x = GlobalAveragePooling2D()(inputs)
        x = Dense(input_channels, activation='relu')(x)
        x = Dense(input_channels, activation='hard_sigmoid')(x)
        x = Reshape((1, 1, input_channels))(x)
        x = Multiply()([inputs, x])

        return x 
開發者ID:xiaochus,項目名稱:MobileNetV3,代碼行數:18,代碼來源:mobilenet_base.py

示例3: test_merge_multiply

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Multiply [as 別名]
def test_merge_multiply():
    i1 = layers.Input(shape=(4, 5))
    i2 = layers.Input(shape=(4, 5))
    i3 = layers.Input(shape=(4, 5))
    o = layers.multiply([i1, i2, i3])
    assert o._keras_shape == (None, 4, 5)
    model = models.Model([i1, i2, i3], o)

    mul_layer = layers.Multiply()
    o2 = mul_layer([i1, i2, i3])
    assert mul_layer.output_shape == (None, 4, 5)

    x1 = np.random.random((2, 4, 5))
    x2 = np.random.random((2, 4, 5))
    x3 = np.random.random((2, 4, 5))
    out = model.predict([x1, x2, x3])
    assert out.shape == (2, 4, 5)
    assert_allclose(out, x1 * x2 * x3, atol=1e-4) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:20,代碼來源:merge_test.py

示例4: model

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Multiply [as 別名]
def model(self):
    inputs_img = Input(shape=(self.img_height, self.img_width, self.num_channels))
    inputs_mask = Input(shape=(self.img_height, self.img_width, self.num_channels))
    
    inputs = Multiply()([inputs_img, inputs_mask])
    
    # Local discriminator
    l_dis = Conv2D(filters=64, kernel_size=5, strides=(2, 2), padding='same')(inputs)
    l_dis = LeakyReLU()(l_dis)
    l_dis = Conv2D(filters=128, kernel_size=5, strides=(2, 2), padding='same')(l_dis)
    l_dis = LeakyReLU()(l_dis)
    l_dis = Conv2D(filters=256, kernel_size=5, strides=(2, 2), padding='same')(l_dis)
    l_dis = LeakyReLU()(l_dis)
    l_dis = Conv2D(filters=512, kernel_size=5, strides=(2, 2), padding='same')(l_dis)
    l_dis = LeakyReLU()(l_dis)
    l_dis = Conv2D(filters=256, kernel_size=5, strides=(2, 2), padding='same')(l_dis)
    l_dis = LeakyReLU()(l_dis)
    l_dis = Conv2D(filters=128, kernel_size=5, strides=(2, 2), padding='same')(l_dis)
    l_dis = LeakyReLU()(l_dis)
    l_dis = Flatten()(l_dis)
    l_dis = Dense(units=1)(l_dis)
    
    model = Model(name=self.model_name, inputs=[inputs_img, inputs_mask], outputs=l_dis)
    return model 
開發者ID:tlatkowski,項目名稱:inpainting-gmcnn-keras,代碼行數:26,代碼來源:discriminator.py

示例5: joint_branch

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Multiply [as 別名]
def joint_branch(self, trainable=True, softmax_trainable=False):
        """
        joint branch of detection and classification
        :param trainable: unfreeze detection branch layer if set to true
        """
        input_img = Input(shape=self.input_shape)
        x_future_det_one, x_future_cls_det_two = self.share_layer(input_img, trainable=trainable)
        x_detection = self.detection_branch_wrapper(x_future_det_one, x_future_cls_det_two, trainable=trainable,
                                                    softmax_trainable=softmax_trainable)
        x_classification = self.classification_branch_wrapper(x_future_cls_det_two,
                                                              softmax_trainable=softmax_trainable)
        joint_x = Multiply()([x_detection, x_classification], name='joint_multiply_layer')
        input_img = Input(shape=self.input_shape)

        joint_model = Model(inputs=input_img,
                            outputs=joint_x)
        return joint_model 
開發者ID:zhuyiche,項目名稱:sfcn-opi,代碼行數:19,代碼來源:model.py

示例6: GMF_get_model

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Multiply [as 別名]
def GMF_get_model(num_users, num_items, latent_dim, regs=[0,0]):
    # Input variables
    user_input = Input(shape=(1,), dtype='int32', name = 'user_input')
    item_input = Input(shape=(1,), dtype='int32', name = 'item_input')

    MF_Embedding_User = Embedding(input_dim = num_users, output_dim = latent_dim, name = 'user_embedding',
                                  embeddings_initializer = 'random_normal', embeddings_regularizer = l2(regs[0]), input_length=1)
    MF_Embedding_Item = Embedding(input_dim = num_items, output_dim = latent_dim, name = 'item_embedding',
                                  embeddings_initializer = 'random_normal', embeddings_regularizer = l2(regs[1]), input_length=1)

    # Crucial to flatten an embedding vector!
    user_latent = Flatten()(MF_Embedding_User(user_input))
    item_latent = Flatten()(MF_Embedding_Item(item_input))

    # Element-wise product of user and item embeddings
    predict_vector = Multiply()([user_latent, item_latent])

    # Final prediction layer
    prediction = Dense(1, activation='sigmoid', kernel_initializer='lecun_uniform', name = 'prediction')(predict_vector)

    model = Model(inputs=[user_input, item_input],
                outputs=prediction)

    return model 
開發者ID:MaurizioFD,項目名稱:RecSys2019_DeepLearning_Evaluation,代碼行數:26,代碼來源:NeuMF_RecommenderWrapper.py

示例7: prepare_model

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Multiply [as 別名]
def prepare_model(ninputs=9600, n_feats=45,nclass=4,n_tfidf=10001):
    inp1 = Input(shape=(ninputs,))
    inp2 = Input(shape=(n_feats,))
    inp3 = Input(shape=(n_tfidf,))
    reg = 0.00005
    out_neurons1 = 500
    #out_neurons2 = 20
    #out_neurons2 = 10
    m1 = Dense(input_dim=ninputs, output_dim=out_neurons1,activation='sigmoid'\
                      ,kernel_regularizer=regularizers.l2(0.00000001))(inp1)
    m1 = Dropout(0.2)(m1)
    m1 = Dense(100,activation='sigmoid')(m1)
    #m1 = Dropout(0.2)(m1)
    #m1 = Dense(4, activation='sigmoid')(m1)
    
    #m2 = Dense(input_dim=n_feats, output_dim=n_feats,activation='relu')(inp2)
    m2 = Dense(50,activation='relu')(inp2)
    #m2=Dense(4,activation='relu')(m2)
    
    m3 = Dense(500, input_dim=n_tfidf, activation='relu',\
                    kernel_regularizer=regularizers.l2(reg))(inp3)
    
    m3 = Dropout(0.4)(m3)
    m3 = Dense(50, activation='relu')(m3)
    #m3 = Dropout(0.4)(m3)
    #m3 = Dense(4, activation='softmax')(m3)
    
    
    #m1 = Dense(input_dim=ninputs, output_dim=out_neurons2,activation='sigmoid')(m1)
    #m2 = Dense(input_dim=ninputs, output_dim=out_neurons2,activation='softmax')(m2)
    
    m = Merge(mode='concat')([m1,m2,m3])
    
    #mul = Multiply()([m1,m2])
    #add = Abs()([m1,m2])
    #m = Merge(mode='concat')([mul,add])
    
    score = Dense(output_dim=nclass,activation='softmax')(m)
    model = Model([inp1,inp2,inp3],score)
    model.compile(loss='categorical_crossentropy', optimizer='adam')
    return model 
開發者ID:GauravBh1010tt,項目名稱:DeepLearn,代碼行數:43,代碼來源:eval_fnc.py

示例8: prepare_model2

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Multiply [as 別名]
def prepare_model2(ninputs=9600, n_feats=45,nclass=4,n_tfidf=10001):
    inp1 = Input(shape=(ninputs,))
    inp2 = Input(shape=(n_feats,))
    inp3 = Input(shape=(n_tfidf,))
    reg = 0.00005
    out_neurons1 = 500
    #out_neurons2 = 20
    #out_neurons2 = 10
    m1 = Dense(input_dim=ninputs, output_dim=out_neurons1,activation='sigmoid'\
                      ,kernel_regularizer=regularizers.l2(0.00000001))(inp1)
    m1 = Dropout(0.2)(m1)
    m1 = Dense(100,activation='sigmoid')(m1)
    #m1 = Dropout(0.2)(m1)
    #m1 = Dense(4, activation='sigmoid')(m1)
    
    m2 = Dense(input_dim=n_feats, output_dim=n_feats,activation='relu')(inp2)
    m2 = Dense(4,activation='relu')(inp2)
    #m2=Dense(4,activation='relu')(m2)
    
    m3 = Dense(500, input_dim=n_tfidf, activation='relu',\
                    kernel_regularizer=regularizers.l2(reg))(inp3)
    
    m3 = Dropout(0.4)(m3)
    m3 = Dense(50, activation='relu')(m3)
    #m3 = Dropout(0.4)(m3)
    #m3 = Dense(4, activation='softmax')(m3)
    
    
    #m1 = Dense(input_dim=ninputs, output_dim=out_neurons2,activation='sigmoid')(m1)
    #m2 = Dense(input_dim=ninputs, output_dim=out_neurons2,activation='softmax')(m2)
    
    m = Merge(mode='concat')([m1,m2,m3])
    
    #mul = Multiply()([m1,m2])
    #add = Abs()([m1,m2])
    #m = Merge(mode='concat')([mul,add])
    
    score = Dense(output_dim=nclass,activation='softmax')(m)
    model = Model([inp1,inp2,inp3],score)
    model.compile(loss='categorical_crossentropy', optimizer='adam')
    return model 
開發者ID:GauravBh1010tt,項目名稱:DeepLearn,代碼行數:43,代碼來源:eval_fnc.py

示例9: attention_temporal

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Multiply [as 別名]
def attention_temporal(self, input_data, sequence_length):
        """
        A temporal attention layer
        :param input_data: Network input
        :param sequence_length: Length of the input sequence
        :return: The output of attention layer
        """
        a = Permute((2, 1))(input_data)
        a = Dense(sequence_length, activation='sigmoid')(a)
        a_probs = Permute((2, 1))(a)
        output_attention_mul = Multiply()([input_data, a_probs])
        return output_attention_mul 
開發者ID:aras62,項目名稱:PIEPredict,代碼行數:14,代碼來源:pie_predict.py

示例10: attention_element

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Multiply [as 別名]
def attention_element(self, input_data, input_dim):
        """
        A self-attention unit
        :param input_data: Network input
        :param input_dim: The feature dimension of the input
        :return: The output of the attention network
        """
        input_data_probs = Dense(input_dim, activation='sigmoid')(input_data)  # sigmoid
        output_attention_mul = Multiply()([input_data, input_data_probs])  # name='att_mul'
        return output_attention_mul 
開發者ID:aras62,項目名稱:PIEPredict,代碼行數:12,代碼來源:pie_predict.py

示例11: _to_normal2d

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Multiply [as 別名]
def _to_normal2d(output_batch) -> ds.MultivariateNormalTriL:
    """
    :param output_batch: (n_samples, 5)
    :return
    """

    # mean of x and y
    x_mean = Lambda(lambda o: o[:, 0])(output_batch)
    y_mean = Lambda(lambda o: o[:, 1])(output_batch)

    # std of x and y
    # std is must be 0 or positive
    x_std = Lambda(lambda o: K.exp(o[:, 2]))(output_batch)
    y_std = Lambda(lambda o: K.exp(o[:, 3]))(output_batch)

    # correlation coefficient
    # correlation coefficient range is [-1, 1]
    cor = Lambda(lambda o: K.tanh(o[:, 4]))(output_batch)

    loc = Concatenate()([
        Lambda(lambda x_mean: K.expand_dims(x_mean, 1))(x_mean),
        Lambda(lambda y_mean: K.expand_dims(y_mean, 1))(y_mean)
    ])

    x_var = Lambda(lambda x_std: K.square(x_std))(x_std)
    y_var = Lambda(lambda y_std: K.square(y_std))(y_std)
    xy_cor = Multiply()([x_std, y_std, cor])

    cov = Lambda(lambda inputs: K.stack(inputs, axis=0))(
        [x_var, xy_cor, xy_cor, y_var])
    cov = Lambda(lambda cov: K.permute_dimensions(cov, (1, 0)))(cov)
    cov = Reshape((2, 2))(cov)

    scale_tril = Lambda(lambda cov: tf.cholesky(cov))(cov)
    mvn = ds.MultivariateNormalTriL(loc, scale_tril)

    return mvn 
開發者ID:t2kasa,項目名稱:social_lstm_keras_tf,代碼行數:39,代碼來源:tf_normal_sampler.py

示例12: call

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Multiply [as 別名]
def call(self, x):
        dim = K.int_shape(x)[-1]
        transform_gate = self.dense_1(x)
        transform_gate = Activation("sigmoid")(transform_gate)
        carry_gate = Lambda(lambda x: 1.0 - x, output_shape=(dim,))(transform_gate)
        transformed_data = self.dense_2(x)
        transformed_data = Activation(self.activation)(transformed_data)
        transformed_gated = Multiply()([transform_gate, transformed_data])
        identity_gated = Multiply()([carry_gate, x])
        value = Add()([transformed_gated, identity_gated])
        return value 
開發者ID:yongzhuo,項目名稱:Keras-TextClassification,代碼行數:13,代碼來源:graph_yoon_kim.py

示例13: call

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Multiply [as 別名]
def call(self, inputs, **kwargs):
        x = inputs[:, 1]
        # print('x.shape: ' + str(K.int_shape(x)))
        bool_mask = Lambda(lambda t: K.greater_equal(t[:, 0], t[:, 1]),
                           output_shape=K.int_shape(x)[1:])(inputs)
        # print('bool_mask.shape: ' + str(K.int_shape(bool_mask)))
        mask = Lambda(lambda t: K.cast(t, dtype='float32'))(bool_mask)
        # print('mask.shape: ' + str(K.int_shape(mask)))
        x = Multiply()([mask, x])
        # print('x.shape: ' + str(K.int_shape(x)))
        return x 
開發者ID:foamliu,項目名稱:Deep-Image-Matting,代碼行數:13,代碼來源:unpooling_layer.py

示例14: attention

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Multiply [as 別名]
def attention(inputs, single_attention_vector=False):
    # attention機製
    time_steps = k_keras.int_shape(inputs)[1]
    input_dim = k_keras.int_shape(inputs)[2]
    x = Permute((2, 1))(inputs)
    x = Dense(time_steps, activation='softmax')(x)
    if single_attention_vector:
        x = Lambda(lambda x: k_keras.mean(x, axis=1))(x)
        x = RepeatVector(input_dim)(x)

    a_probs = Permute((2, 1))(x)
    output_attention_mul = Multiply()([inputs, a_probs])
    return output_attention_mul 
開發者ID:yongzhuo,項目名稱:nlp_xiaojiang,代碼行數:15,代碼來源:keras_bert_classify_bi_lstm.py

示例15: build

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Multiply [as 別名]
def build(self):
    # qd_input = Input((self.config.kernel_size,), name="qd_input")
    dd_input = Input((self.config.nb_supervised_doc, self.config.kernel_size), name='dd_input')
    # z = Dense(self.config.hidden_size, activation='tanh', name="qd_hidden")(qd_input)
    # qd_out = Dense(self.config.out_size, name="qd_out")(z)

    z = Dense(self.config.hidden_size, activation='tanh', name="dd_hidden")(dd_input)
    dd_init_out = Dense(self.config.out_size, name='dd_init_out')(z)

    dd_gate = Input((self.config.nb_supervised_doc, 1), name='baseline_doc_score')
    dd_w = Dense(1, kernel_initializer=self.initializer_gate, use_bias=False, name='dd_gate')(dd_gate)
    # dd_w = Lambda(lambda x: softmax(x, axis=1), output_shape=(self.config.nb_supervised_doc,), name='dd_softmax')(dd_w)

    dd_w = Reshape((self.config.nb_supervised_doc,))(dd_w)
    dd_init_out = Reshape((self.config.nb_supervised_doc,))(dd_init_out)

    if self.config.method in [1, 3]: # no doc gating, with dense layer
      z = dd_init_out
    elif self.config.method == 2:
      logging.info("Apply doc gating")
      z = Multiply(name='dd_out')([dd_init_out, dd_w])
    else:
      raise ValueError("Method not initialized, please check config file")

    if self.config.method in [1, 2]:
      logging.info("Dense layer on top")
      z = Dense(self.config.merge_hidden, activation='tanh', name='merge_hidden')(z)
      out = Dense(self.config.merge_out, name='score')(z)
    else:
      logging.info("Apply doc gating, No dense layer on top, sum up scores")
      out = Dot(axes=[1, 1], name='score')([z, dd_w])

    model = Model(inputs=[dd_input, dd_gate], outputs=[out])
    print(model.summary())

    return model 
開發者ID:ucasir,項目名稱:NPRF,代碼行數:38,代碼來源:nprf_knrm.py


注:本文中的keras.layers.Multiply方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。