當前位置: 首頁>>代碼示例>>Python>>正文


Python layers.Merge方法代碼示例

本文整理匯總了Python中keras.layers.Merge方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.Merge方法的具體用法?Python layers.Merge怎麽用?Python layers.Merge使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.layers的用法示例。


在下文中一共展示了layers.Merge方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: create_model

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Merge [as 別名]
def create_model(layer_sizes1, layer_sizes2, input_size1, input_size2,
                    learning_rate, reg_par, outdim_size, use_all_singular_values):
    """
    builds the whole model
    the structure of each sub-network is defined in build_mlp_net,
    and it can easily get substituted with a more efficient and powerful network like CNN
    """
    view1_model = build_mlp_net(layer_sizes1, input_size1, reg_par)
    view2_model = build_mlp_net(layer_sizes2, input_size2, reg_par)

    model = Sequential()
    model.add(Merge([view1_model, view2_model], mode='concat'))

    model_optimizer = RMSprop(lr=learning_rate)
    model.compile(loss=cca_loss(outdim_size, use_all_singular_values), optimizer=model_optimizer)

    return model 
開發者ID:VahidooX,項目名稱:DeepCCA,代碼行數:19,代碼來源:models.py

示例2: emoji2vec_model

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Merge [as 別名]
def emoji2vec_model(embedding_matrix, emoji_vocab_size, word_vocab_size):
    emoji_model = Sequential()
    emoji_model.add(Embedding(emoji_vocab_size + 1, embedding_dim, input_length=1, trainable=True))
    emoji_model.add(Reshape((embedding_dim,)))
    word_model = Sequential()
    word_model.add(Embedding(word_vocab_size + 1, embedding_dim, weights=[embedding_matrix], input_length=maximum_length, trainable=False))
    word_model.add(Bidirectional(LSTM(embedding_dim, dropout=0.5), merge_mode='sum'))
    model = Sequential()
    model.add(Merge([emoji_model, word_model], mode='concat'))
    model.add(Dense(embedding_dim * 2, activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(2, activation='softmax'))
    return emoji_model, word_model, model


# Solely based on emoji descriptions, obtain the emoji2vec representations for all possible emojis 
開發者ID:MirunaPislar,項目名稱:Sarcasm-Detection,代碼行數:18,代碼來源:emoji2vec.py

示例3: sequential_model

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Merge [as 別名]
def sequential_model(input_dim_x1=1596, input_dim_x2=10, weights_path=None):
    left_branch = Sequential()
    left_branch.add(Dense(4096, activation='relu', init=my_init, input_dim=input_dim_x1))
    left_branch.add(Dropout(0.5))
    left_branch.add(Dense(2048, activation='relu', init=my_init))
    left_branch.add(Dropout(0.5))
    left_branch.add(Dense(512, activation='relu', init=my_init))
    right_branch = Sequential()
    right_branch.add(Dense(512, activation='relu', init=my_init, input_dim=input_dim_x2))
    merged = Merge([left_branch, right_branch], mode='concat')
    final_model = Sequential()
    final_model.add(merged)
    final_model.add(Dense(12))
    final_model.add(Activation('softmax'))
    if weights_path:
        final_model.load_weights(weights_path)
    return final_model 
開發者ID:SiyuanQi,項目名稱:grammar-activity-prediction,代碼行數:19,代碼來源:vgg_fine_tune.py

示例4: create_model

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Merge [as 別名]
def create_model(self, ret_model = False):
	       
		image_model = Sequential()
		image_model.add(Dense(EMBEDDING_DIM, input_dim = 4096, activation='relu'))
		image_model.add(RepeatVector(self.max_length))

		lang_model = Sequential()
		lang_model.add(Embedding(self.vocab_size, 256, input_length=self.max_length))
		lang_model.add(LSTM(256,return_sequences=True))
		lang_model.add(TimeDistributed(Dense(EMBEDDING_DIM)))

		model = Sequential()
		model.add(Merge([image_model, lang_model], mode='concat'))
		model.add(LSTM(1000,return_sequences=False))
		model.add(Dense(self.vocab_size))
		model.add(Activation('softmax'))

		print ("Model created!")

		if(ret_model==True):
		    return model

		model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy'])
		return model 
開發者ID:Shobhit20,項目名稱:Image-Captioning,代碼行數:26,代碼來源:SceneDesc.py

示例5: call

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Merge [as 別名]
def call(self, x, mask=None):
        layer_output = self.layer.call(x, mask)
        if isinstance(self.merge_mode, str):
            self.merge_mode = Merge(mode=self.merge_mode)
        output = self.merge_mode([x, layer_output])
        return output 
開發者ID:codekansas,項目名稱:gandlf,代碼行數:8,代碼來源:wrappers.py

示例6: get_config

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Merge [as 別名]
def get_config(self):
        config = {'merge_mode': {'class_name': 'Merge',
                                 'config': self.merge_mode.get_config()}}
        base_config = super(Residual, self).get_config()
        return dict(list(base_config.items()) + list(config.items())) 
開發者ID:codekansas,項目名稱:gandlf,代碼行數:7,代碼來源:wrappers.py

示例7: prepare_model

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Merge [as 別名]
def prepare_model(ninputs=9600, n_feats=45,nclass=4,n_tfidf=10001):
    inp1 = Input(shape=(ninputs,))
    inp2 = Input(shape=(n_feats,))
    inp3 = Input(shape=(n_tfidf,))
    reg = 0.00005
    out_neurons1 = 500
    #out_neurons2 = 20
    #out_neurons2 = 10
    m1 = Dense(input_dim=ninputs, output_dim=out_neurons1,activation='sigmoid'\
                      ,kernel_regularizer=regularizers.l2(0.00000001))(inp1)
    m1 = Dropout(0.2)(m1)
    m1 = Dense(100,activation='sigmoid')(m1)
    #m1 = Dropout(0.2)(m1)
    #m1 = Dense(4, activation='sigmoid')(m1)
    
    #m2 = Dense(input_dim=n_feats, output_dim=n_feats,activation='relu')(inp2)
    m2 = Dense(50,activation='relu')(inp2)
    #m2=Dense(4,activation='relu')(m2)
    
    m3 = Dense(500, input_dim=n_tfidf, activation='relu',\
                    kernel_regularizer=regularizers.l2(reg))(inp3)
    
    m3 = Dropout(0.4)(m3)
    m3 = Dense(50, activation='relu')(m3)
    #m3 = Dropout(0.4)(m3)
    #m3 = Dense(4, activation='softmax')(m3)
    
    
    #m1 = Dense(input_dim=ninputs, output_dim=out_neurons2,activation='sigmoid')(m1)
    #m2 = Dense(input_dim=ninputs, output_dim=out_neurons2,activation='softmax')(m2)
    
    m = Merge(mode='concat')([m1,m2,m3])
    
    #mul = Multiply()([m1,m2])
    #add = Abs()([m1,m2])
    #m = Merge(mode='concat')([mul,add])
    
    score = Dense(output_dim=nclass,activation='softmax')(m)
    model = Model([inp1,inp2,inp3],score)
    model.compile(loss='categorical_crossentropy', optimizer='adam')
    return model 
開發者ID:GauravBh1010tt,項目名稱:DeepLearn,代碼行數:43,代碼來源:eval_fnc.py

示例8: create_model

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Merge [as 別名]
def create_model(self, ret_model = False):
        #base_model = VGG16(weights='imagenet', include_top=False, input_shape = (224, 224, 3))
        #base_model.trainable=False
        image_model = Sequential()
        #image_model.add(base_model)
        #image_model.add(Flatten())
        image_model.add(Dense(EMBEDDING_DIM, input_dim = 4096, activation='relu'))

        image_model.add(RepeatVector(self.max_cap_len))

        lang_model = Sequential()
        lang_model.add(Embedding(self.vocab_size, 256, input_length=self.max_cap_len))
        lang_model.add(LSTM(256,return_sequences=True))
        lang_model.add(TimeDistributed(Dense(EMBEDDING_DIM)))

        model = Sequential()
        model.add(Merge([image_model, lang_model], mode='concat'))
        model.add(LSTM(1000,return_sequences=False))
        model.add(Dense(self.vocab_size))
        model.add(Activation('softmax'))

        print "Model created!"

        if(ret_model==True):
            return model

        model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy'])
        return model 
開發者ID:anuragmishracse,項目名稱:caption_generator,代碼行數:30,代碼來源:caption_generator.py

示例9: vqa_model

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Merge [as 別名]
def vqa_model(embedding_matrix, num_words, embedding_dim, seq_length, dropout_rate, num_classes):
    vgg_model = img_model(dropout_rate)
    lstm_model = Word2VecModel(embedding_matrix, num_words, embedding_dim, seq_length, dropout_rate)
    print "Merging final model..."
    fc_model = Sequential()
    fc_model.add(Merge([vgg_model, lstm_model], mode='mul'))
    fc_model.add(Dropout(dropout_rate))
    fc_model.add(Dense(1000, activation='tanh'))
    fc_model.add(Dropout(dropout_rate))
    fc_model.add(Dense(num_classes, activation='softmax'))
    fc_model.compile(optimizer='rmsprop', loss='categorical_crossentropy',
        metrics=['accuracy'])
    return fc_model 
開發者ID:anantzoid,項目名稱:VQA-Keras-Visual-Question-Answering,代碼行數:15,代碼來源:models.py

示例10: basic_mlp

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Merge [as 別名]
def basic_mlp(img_vec_dim, vocabulary_size, word_emb_dim,
              max_ques_length, num_hidden_units_lstm, 
              num_hidden_layers_mlp, num_hidden_units_mlp,
              dropout, nb_classes, class_activation):
    # Image model
    model_image = Sequential()
    model_image.add(Reshape((img_vec_dim,), input_shape=(img_vec_dim,)))

    # Language Model
    model_language = Sequential()
    model_language.add(Embedding(vocabulary_size, word_emb_dim, input_length=max_ques_length))
    model_language.add(LSTM(num_hidden_units_lstm, return_sequences=True, input_shape=(max_ques_length, word_emb_dim)))
    model_language.add(LSTM(num_hidden_units_lstm, return_sequences=True))
    model_language.add(LSTM(num_hidden_units_lstm, return_sequences=False))

    # combined model
    model = Sequential()
    model.add(Merge([model_language, model_image], mode='concat', concat_axis=1))


    for i in xrange(num_hidden_layers_mlp):
        model.add(Dense(num_hidden_units_mlp))
        model.add(Dropout(dropout))

    model.add(Dense(nb_classes))
    model.add(Activation(class_activation))

    return model 
開發者ID:channelCS,項目名稱:Audio-Vision,代碼行數:30,代碼來源:my_models.py

示例11: deeper_lstm

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Merge [as 別名]
def deeper_lstm(img_vec_dim, activation_1,activation_2, dropout, vocabulary_size,
                num_hidden_units_lstm, max_ques_length,
                word_emb_dim, num_hidden_layers_mlp,
                num_hidden_units_mlp, nb_classes, class_activation,embedding_matrix):
    
    # Make image model
    inpx1=Input(shape=(img_vec_dim,))
    x1=Dense(1024, activation=activation_1)(inpx1)
    x1=Dropout(dropout)(x1)
    image_model = Model([inpx1],x1)
    image_model.summary()
    
    # Make language Model
    inpx0=Input(shape=(max_ques_length,))
    x0=Embedding(vocabulary_size, word_emb_dim, weights=[embedding_matrix], trainable=False)(inpx0)
    x1=LSTM(num_hidden_units_lstm, return_sequences=True)(x0)
    x1=LSTM(num_hidden_units_lstm, return_sequences=True)(x1)
    x2=LSTM(num_hidden_units_lstm, return_sequences=False)(x1)
    x2=Dense(1024,activation=activation_2)(x2)
    x2=Dropout(dropout)(x2)

    # Make embedding_model
    embedding_model = Model([inpx0],x2)
    embedding_model.summary()
    
    # Make combined model
    model = Sequential()
    model.add(Merge([image_model,embedding_model],mode = 'mul'))
    for i in xrange(num_hidden_layers_mlp):
        model.add(Dense(num_hidden_units_mlp))
        model.add(Activation(activation_1))
        model.add(Dropout(dropout))
    model.summary()
    model.add(Dense(nb_classes))
    model.add(Activation(class_activation))

    return model 
開發者ID:channelCS,項目名稱:Audio-Vision,代碼行數:39,代碼來源:my_models.py

示例12: visual_lstm

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Merge [as 別名]
def visual_lstm(img_vec_dim, activation_1,activation_2, dropout, vocabulary_size,
                num_hidden_units_lstm, max_ques_length,
                word_emb_dim, num_hidden_layers_mlp,
                num_hidden_units_mlp, nb_classes, class_activation,embedding_matrix):
    
    # Make image model
    inpx1=Input(shape=(img_vec_dim,))
    x1=Dense(embedding_matrix.shape[1], activation='tanh')(inpx1)
    x1=Reshape((1,embedding_matrix.shape[1]))(x1)
    image_model = Model([inpx1],x1)
    image_model.summary()
    
    # Make language Model
    inpx0=Input(shape=(max_ques_length,))
    x0=Embedding(vocabulary_size, word_emb_dim, weights=[embedding_matrix], trainable=False)(inpx0)
    x2=Dense(embedding_matrix.shape[1],activation='tanh')(x0)
    x2=Dropout(dropout)(x2)

    # Make embedding_model
    embedding_model = Model([inpx0],x2)
    embedding_model.summary()
    
    # Make combined model
    model = Sequential()
    model.add(Merge([image_model,embedding_model],mode = 'concat', concat_axis=1))
    model.add(LSTM(num_hidden_units_lstm, return_sequences=False, go_backwards=True))
    model.add(Dense(num_hidden_units_mlp))
    model.add(Activation('relu'))
    model.add(Dropout(dropout))
    
    model.summary()
    model.add(Dense(nb_classes))
    model.add(Activation(class_activation))

    return model 
開發者ID:channelCS,項目名稱:Audio-Vision,代碼行數:37,代碼來源:my_models.py

示例13: visual_lstm2

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Merge [as 別名]
def visual_lstm2(img_vec_dim, activation_1,activation_2, dropout, vocabulary_size,
                num_hidden_units_lstm, max_ques_length,
                word_emb_dim, num_hidden_layers_mlp,
                num_hidden_units_mlp, nb_classes, class_activation,embedding_matrix):
    
    # Make image model
    inpx1=Input(shape=(img_vec_dim,))
    x1=Dense(embedding_matrix.shape[1], activation=activation_1)(inpx1)
    x1=Reshape((1,embedding_matrix.shape[1]))(x1)
    image_model = Model([inpx1],x1)
    image_model.summary()
    
    # Make language Model
    inpx0=Input(shape=(max_ques_length,))
    x0=Embedding(vocabulary_size, word_emb_dim, weights=[embedding_matrix], trainable=False)(inpx0)
    x2=Dense(embedding_matrix.shape[1],activation=activation_2)(x0)
    x2=Dropout(dropout)(x2)

    # Make embedding_model
    embedding_model = Model([inpx0],x2)
    embedding_model.summary()
    
    inpx2=Input(shape=(img_vec_dim,))
    x1=Dense(embedding_matrix.shape[1], activation=activation_1)(inpx1)
    x3=Reshape((1,embedding_matrix.shape[1]))(x1)
    image_model2 = Model([inpx2],x3)
    image_model2.summary()
    
    # Make combined model
    model = Sequential()
    model.add(Merge([image_model,embedding_model, image_model2],mode = 'concat', concat_axis=1))
    model.add(Bidirectional(LSTM(num_hidden_units_lstm, return_sequences=False)))
    model.add(Dense(num_hidden_units_mlp))
    model.add(Activation(activation_1))
    model.add(Dropout(dropout))
    
    model.summary()
    model.add(Dense(nb_classes))
    model.add(Activation(class_activation))

    return model 
開發者ID:channelCS,項目名稱:Audio-Vision,代碼行數:43,代碼來源:my_models.py

示例14: main

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Merge [as 別名]
def main():
    df_train = load('adult.data')
    df_test = load('adult.test')
    df = pd.concat([df_train, df_test])
    train_len = len(df_train)
    
    X, y = preprocess(df)
    X_train = X[:train_len]
    y_train = y[:train_len]
    X_test = X[train_len:]
    y_test = y[train_len:]
    
    wide = Sequential()
    wide.add(Dense(1, input_dim=X_train.shape[1]))
    
    deep = Sequential()
    # TODO: add embedding
    deep.add(Dense(input_dim=X_train.shape[1], output_dim=100, activation='relu'))
    deep.add(Dense(100, activation='relu'))
    deep.add(Dense(50, activation='relu'))
    deep.add(Dense(1, activation='sigmoid'))
    
    model = Sequential()
    model.add(Merge([wide, deep], mode='concat', concat_axis=1))
    model.add(Dense(1, activation='sigmoid'))
    
    model.compile(
        optimizer='rmsprop',
        loss='binary_crossentropy',
        metrics=['accuracy']
    )
    
    model.fit([X_train, X_train], y_train, nb_epoch=10, batch_size=32)
    
    loss, accuracy = model.evaluate([X_test, X_test], y_test)
    print('\n', 'test accuracy:', accuracy) 
開發者ID:jorahn,項目名稱:keras-wide-n-deep,代碼行數:38,代碼來源:wide_deep_keras.py

示例15: train

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Merge [as 別名]
def train(x_1_train, x_2_train, y_train, x_1_test, x_2_test, y_test, model_path):
    batch_size = 16
    model_name = 'layer_3_with_dropout_0.5_dropoutWU_0.4_maxlen_200_epoch_300_feature_completion.h5'
    left_branch = Sequential()
    left_branch.add(Dense(32, input_dim=x_1_train.shape[1]))
    # left_branch.add(Flatten())
    right_branch = Sequential()
    right_branch.add(LSTM(128, return_sequences=True, dropout_U=0.4, dropout_W=0.4, input_shape=x_2_train.shape[1:3]))
    right_branch.add(Dropout(0.5))
    right_branch.add(LSTM(64, dropout_U=0.4, dropout_W=0.4))
    right_branch.add(Dropout(0.5))
    right_branch.add(Dense(32))
    merged = Merge([left_branch, right_branch], mode='concat')
    final_model = Sequential()
    final_model.add(merged)
    final_model.add(Dense(12))
    final_model.add(Activation('softmax'))
    final_model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])
    plot(final_model, to_file=model_path + model_name[:-3] + '.png', show_shapes=True)
    plot(right_branch, to_file=model_path + model_name[:-3] + '_right_branch.png', show_shapes=True)
    plot(left_branch, to_file=model_path + model_name[:-3] + '_left_branch.png', show_shapes=True)
    final_model.fit([x_1_train, x_2_train], y_train, batch_size=batch_size, nb_epoch=300, validation_data=([x_1_test, x_2_test], y_test))
    final_model.save(model_path + model_name)
    score, acc = final_model.evaluate([x_1_test, x_2_test], y_test, batch_size=batch_size)
    print('Test Score', score)
    print('Test Accuracy', acc)
    return model_path + model_name 
開發者ID:SiyuanQi,項目名稱:grammar-activity-prediction,代碼行數:29,代碼來源:affordance_lstm.py


注:本文中的keras.layers.Merge方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。