當前位置: 首頁>>代碼示例>>Python>>正文


Python layers.LeakyReLU方法代碼示例

本文整理匯總了Python中keras.layers.LeakyReLU方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.LeakyReLU方法的具體用法?Python layers.LeakyReLU怎麽用?Python layers.LeakyReLU使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.layers的用法示例。


在下文中一共展示了layers.LeakyReLU方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: g_block

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import LeakyReLU [as 別名]
def g_block(inp, fil, u = True):

    if u:
        out = UpSampling2D(interpolation = 'bilinear')(inp)
    else:
        out = Activation('linear')(inp)

    skip = Conv2D(fil, 1, padding = 'same', kernel_initializer = 'he_normal')(out)

    out = Conv2D(filters = fil, kernel_size = 3, padding = 'same', kernel_initializer = 'he_normal')(out)
    out = LeakyReLU(0.2)(out)

    out = Conv2D(filters = fil, kernel_size = 3, padding = 'same', kernel_initializer = 'he_normal')(out)
    out = LeakyReLU(0.2)(out)

    out = Conv2D(fil, 1, padding = 'same', kernel_initializer = 'he_normal')(out)

    out = add([out, skip])
    out = LeakyReLU(0.2)(out)

    return out 
開發者ID:manicman1999,項目名稱:Keras-BiGAN,代碼行數:23,代碼來源:bigan.py

示例2: d_block

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import LeakyReLU [as 別名]
def d_block(inp, fil, p = True):

    skip = Conv2D(fil, 1, padding = 'same', kernel_initializer = 'he_normal')(inp)

    out = Conv2D(filters = fil, kernel_size = 3, padding = 'same', kernel_initializer = 'he_normal')(inp)
    out = LeakyReLU(0.2)(out)

    out = Conv2D(filters = fil, kernel_size = 3, padding = 'same', kernel_initializer = 'he_normal')(out)
    out = LeakyReLU(0.2)(out)

    out = Conv2D(fil, 1, padding = 'same', kernel_initializer = 'he_normal')(out)

    out = add([out, skip])
    out = LeakyReLU(0.2)(out)

    if p:
        out = AveragePooling2D()(out)

    return out 
開發者ID:manicman1999,項目名稱:Keras-BiGAN,代碼行數:21,代碼來源:bigan.py

示例3: encoder

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import LeakyReLU [as 別名]
def encoder(self):

        if self.E:
            return self.E

        inp = Input(shape = [im_size, im_size, 3])

        x = d_block(inp, 1 * cha)   #64
        x = d_block(x, 2 * cha)   #32
        x = d_block(x, 3 * cha)   #16
        x = d_block(x, 4 * cha)  #8
        x = d_block(x, 8 * cha)  #4
        x = d_block(x, 16 * cha, p = False)  #4

        x = Flatten()(x)

        x = Dense(16 * cha, kernel_initializer = 'he_normal')(x)
        x = LeakyReLU(0.2)(x)

        x = Dense(latent_size, kernel_initializer = 'he_normal', bias_initializer = 'zeros')(x)

        self.E = Model(inputs = inp, outputs = x)

        return self.E 
開發者ID:manicman1999,項目名稱:Keras-BiGAN,代碼行數:26,代碼來源:bigan.py

示例4: _conv_block

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import LeakyReLU [as 別名]
def _conv_block(inp, convs, skip=True):
  x = inp
  count = 0
  len_convs = len(convs)
  for conv in convs:
    if count == (len_convs - 2) and skip:
      skip_connection = x
    count += 1
    if conv['stride'] > 1: x = ZeroPadding2D(((1,0),(1,0)))(x) # peculiar padding as darknet prefer left and top
    x = Conv2D(conv['filter'],
           conv['kernel'],
           strides=conv['stride'],
           padding='valid' if conv['stride'] > 1 else 'same', # peculiar padding as darknet prefer left and top
           name='conv_' + str(conv['layer_idx']),
           use_bias=False if conv['bnorm'] else True)(x)
    if conv['bnorm']: x = BatchNormalization(epsilon=0.001, name='bnorm_' + str(conv['layer_idx']))(x)
    if conv['leaky']: x = LeakyReLU(alpha=0.1, name='leaky_' + str(conv['layer_idx']))(x)
  return add([skip_connection, x]) if skip else x


#SPP block uses three pooling layers of sizes [5, 9, 13] with strides one and all outputs together with the input are concatenated to be fed
  #to the FC block 
開發者ID:produvia,項目名稱:ai-platform,代碼行數:24,代碼來源:yolov3_weights_to_keras.py

示例5: _conv_block

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import LeakyReLU [as 別名]
def _conv_block(inp, convs, do_skip=True):
    x = inp
    count = 0
    
    for conv in convs:
        if count == (len(convs) - 2) and do_skip:
            skip_connection = x
        count += 1
        
        if conv['stride'] > 1: x = ZeroPadding2D(((1,0),(1,0)))(x) # unlike tensorflow darknet prefer left and top paddings
        x = Conv2D(conv['filter'], 
                   conv['kernel'], 
                   strides=conv['stride'], 
                   padding='valid' if conv['stride'] > 1 else 'same', # unlike tensorflow darknet prefer left and top paddings
                   name='conv_' + str(conv['layer_idx']), 
                   use_bias=False if conv['bnorm'] else True)(x)
        if conv['bnorm']: x = BatchNormalization(epsilon=0.001, name='bnorm_' + str(conv['layer_idx']))(x)
        if conv['leaky']: x = LeakyReLU(alpha=0.1, name='leaky_' + str(conv['layer_idx']))(x)

    return add([skip_connection, x]) if do_skip else x 
開發者ID:OlafenwaMoses,項目名稱:ImageAI,代碼行數:22,代碼來源:yolo.py

示例6: build_discriminator

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import LeakyReLU [as 別名]
def build_discriminator(self):
        """Discriminator network with PatchGAN."""
        inp_img = Input(shape = (self.image_size, self.image_size, 3))
        x = ZeroPadding2D(padding = 1)(inp_img)
        x = Conv2D(filters = self.d_conv_dim, kernel_size = 4, strides = 2, padding = 'valid', use_bias = False)(x)
        x = LeakyReLU(0.01)(x)
    
        curr_dim = self.d_conv_dim
        for i in range(1, self.d_repeat_num):
            x = ZeroPadding2D(padding = 1)(x)
            x = Conv2D(filters = curr_dim*2, kernel_size = 4, strides = 2, padding = 'valid')(x)
            x = LeakyReLU(0.01)(x)
            curr_dim = curr_dim * 2
    
        kernel_size = int(self.image_size / np.power(2, self.d_repeat_num))
    
        out_src = ZeroPadding2D(padding = 1)(x)
        out_src = Conv2D(filters = 1, kernel_size = 3, strides = 1, padding = 'valid', use_bias = False)(out_src)
    
        out_cls = Conv2D(filters = self.c_dim, kernel_size = kernel_size, strides = 1, padding = 'valid', use_bias = False)(x)
        out_cls = Reshape((self.c_dim, ))(out_cls)
    
        return Model(inp_img, [out_src, out_cls]) 
開發者ID:hoangthang1607,項目名稱:StarGAN-Keras,代碼行數:25,代碼來源:StarGAN.py

示例7: build_model

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import LeakyReLU [as 別名]
def build_model():
    x = Input((28 * 28,), name="x")
    hidden_dim = 512
    h = x
    h = Dense(hidden_dim)(h)
    h = BatchNormalization()(h)
    h = LeakyReLU(0.2)(h)
    h = Dropout(0.5)(h)
    h = Dense(hidden_dim / 2)(h)
    h = BatchNormalization()(h)
    h = LeakyReLU(0.2)(h)
    h = Dropout(0.5)(h)
    h = Dense(10)(h)
    h = Activation('softmax')(h)
    m = Model(x, h)
    m.compile('adam', 'categorical_crossentropy', metrics=['accuracy'])
    return m 
開發者ID:bstriner,項目名稱:keras-tqdm,代碼行數:19,代碼來源:mnist_model.py

示例8: residual_layer

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import LeakyReLU [as 別名]
def residual_layer(self, x, filters, kernel_size):
        conv_1 = self.conv_layer(x, filters, kernel_size)
        conv_2 = Conv2D(
            filters = filters,
            kernel_size = kernel_size,
            strides = (1, 1),
            padding = 'same',
            data_format = 'channels_first',
            use_bias = False,
            activation = 'linear',
            kernel_regularizer = regularizers.l2(self.reg_const)
            )(conv_1)
        bn = BatchNormalization(axis=1)(conv_2)
        merge_layer = add([x, bn])
        lrelu = LeakyReLU()(merge_layer)
        return lrelu 
開發者ID:Urinx,項目名稱:ReinforcementLearning,代碼行數:18,代碼來源:neural_network.py

示例9: value_head

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import LeakyReLU [as 別名]
def value_head(self, x):
        x = self.conv_layer(x, 1, (1, 1))
        x = Flatten()(x)
        x = Dense(
            self.value_head_hidden_layer_size,
            use_bias = False,
            activation = 'linear',
            kernel_regularizer = regularizers.l2(self.reg_const)
            )(x)
        x = LeakyReLU()(x)
        x = Dense(
            1,
            use_bias = False,
            activation = 'tanh',
            kernel_regularizer = regularizers.l2(self.reg_const),
            name = 'value_head'
            )(x)
        return x 
開發者ID:Urinx,項目名稱:ReinforcementLearning,代碼行數:20,代碼來源:neural_network.py

示例10: _conv_block

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import LeakyReLU [as 別名]
def _conv_block(inp, convs, skip=True):
    x = inp
    count = 0
    
    for conv in convs:
        if count == (len(convs) - 2) and skip:
            skip_connection = x
        count += 1
        
        if conv['stride'] > 1: x = ZeroPadding2D(((1,0),(1,0)))(x) # peculiar padding as darknet prefer left and top
        x = Conv2D(conv['filter'], 
                   conv['kernel'], 
                   strides=conv['stride'], 
                   padding='valid' if conv['stride'] > 1 else 'same', # peculiar padding as darknet prefer left and top
                   name='conv_' + str(conv['layer_idx']), 
                   use_bias=False if conv['bnorm'] else True)(x)
        if conv['bnorm']: x = BatchNormalization(epsilon=0.001, name='bnorm_' + str(conv['layer_idx']))(x)
        if conv['leaky']: x = LeakyReLU(alpha=0.1, name='leaky_' + str(conv['layer_idx']))(x)

    return add([skip_connection, x]) if skip else x 
開發者ID:anmspro,項目名稱:Traffic-Signal-Violation-Detection-System,代碼行數:22,代碼來源:object_detection.py

示例11: discriminator

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import LeakyReLU [as 別名]
def discriminator(self):

        if self.D:
            return self.D

        inp = Input(shape = [im_size, im_size, 3])
        inpl = Input(shape = [latent_size])

        #Latent input
        l = Dense(512, kernel_initializer = 'he_normal')(inpl)
        l = LeakyReLU(0.2)(l)
        l = Dense(512, kernel_initializer = 'he_normal')(l)
        l = LeakyReLU(0.2)(l)
        l = Dense(512, kernel_initializer = 'he_normal')(l)
        l = LeakyReLU(0.2)(l)

        x = d_block(inp, 1 * cha)   #64
        x = d_block(x, 2 * cha)   #32
        x = d_block(x, 3 * cha)   #16
        x = d_block(x, 4 * cha)  #8
        x = d_block(x, 8 * cha)  #4
        x = d_block(x, 16 * cha, p = False)  #4

        x = Flatten()(x)

        x = concatenate([x, l])

        x = Dense(16 * cha, kernel_initializer = 'he_normal')(x)
        x = LeakyReLU(0.2)(x)

        x = Dense(1, kernel_initializer = 'he_normal')(x)

        self.D = Model(inputs = [inp, inpl], outputs = x)

        return self.D 
開發者ID:manicman1999,項目名稱:Keras-BiGAN,代碼行數:37,代碼來源:bigan.py

示例12: init_model

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import LeakyReLU [as 別名]
def init_model(self): 
        x = Input(shape = (IMGWIDTH, IMGWIDTH, 3))
        
        x1 = Conv2D(8, (3, 3), padding='same', activation = 'relu')(x)
        x1 = BatchNormalization()(x1)
        x1 = MaxPooling2D(pool_size=(2, 2), padding='same')(x1)
        
        x2 = Conv2D(8, (5, 5), padding='same', activation = 'relu')(x1)
        x2 = BatchNormalization()(x2)
        x2 = MaxPooling2D(pool_size=(2, 2), padding='same')(x2)
        
        x3 = Conv2D(16, (5, 5), padding='same', activation = 'relu')(x2)
        x3 = BatchNormalization()(x3)
        x3 = MaxPooling2D(pool_size=(2, 2), padding='same')(x3)
        
        x4 = Conv2D(16, (5, 5), padding='same', activation = 'relu')(x3)
        x4 = BatchNormalization()(x4)
        x4 = MaxPooling2D(pool_size=(4, 4), padding='same')(x4)
        
        y = Flatten()(x4)
        y = Dropout(0.5)(y)
        y = Dense(16)(y)
        y = LeakyReLU(alpha=0.1)(y)
        y = Dropout(0.5)(y)
        y = Dense(1, activation = 'sigmoid')(y)

        return KerasModel(inputs = x, outputs = y) 
開發者ID:DariusAf,項目名稱:MesoNet,代碼行數:29,代碼來源:classifiers.py

示例13: initial_conv

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import LeakyReLU [as 別名]
def initial_conv(input):
    x = Conv2D(16, (3, 3), padding='same', **conv_params)(input)
    x = BatchNormalization(**bn_params)(x)
    x = LeakyReLU(leakiness)(x)
    return x 
開發者ID:vuptran,項目名稱:sesemi,代碼行數:7,代碼來源:wrn.py

示例14: expand_conv

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import LeakyReLU [as 別名]
def expand_conv(init, base, k, strides=(1, 1)):
    x = Conv2D(base * k, (3, 3), padding='same',
               strides=strides, **conv_params)(init)
    x = BatchNormalization(**bn_params)(x)
    x = LeakyReLU(leakiness)(x)

    x = Conv2D(base * k, (3, 3), padding='same', **conv_params)(x)

    skip = Conv2D(base * k, (1, 1), padding='same',
                  strides=strides, **conv_params)(init)

    m = Add()([x, skip])
    return m 
開發者ID:vuptran,項目名稱:sesemi,代碼行數:15,代碼來源:wrn.py

示例15: conv1_block

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import LeakyReLU [as 別名]
def conv1_block(input, k=1, dropout=0.0):
    init = input
    
    x = BatchNormalization(**bn_params)(input)
    x = LeakyReLU(leakiness)(x)
    x = Conv2D(16 * k, (3, 3), padding='same', **conv_params)(x)

    if dropout > 0.0: x = Dropout(dropout)(x)
    
    x = BatchNormalization(**bn_params)(x)
    x = LeakyReLU(leakiness)(x)
    x = Conv2D(16 * k, (3, 3), padding='same', **conv_params)(x)

    m = Add()([init, x])
    return m 
開發者ID:vuptran,項目名稱:sesemi,代碼行數:17,代碼來源:wrn.py


注:本文中的keras.layers.LeakyReLU方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。