當前位置: 首頁>>代碼示例>>Python>>正文


Python layers.InputSpec方法代碼示例

本文整理匯總了Python中keras.layers.InputSpec方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.InputSpec方法的具體用法?Python layers.InputSpec怎麽用?Python layers.InputSpec使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.layers的用法示例。


在下文中一共展示了layers.InputSpec方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: build

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import InputSpec [as 別名]
def build(self, input_shape):
        self._validate_input_shape(input_shape)

        self.input_spec = InputSpec(shape=input_shape)
        
        if not self.layer.built:
            self.layer.build(input_shape)
            self.layer.built = True
            
        input_dim = input_shape[-1]

        if self.layer.return_sequences:
            output_dim = self.layer.compute_output_shape(input_shape)[0][-1]
        else:
            output_dim = self.layer.compute_output_shape(input_shape)[-1]
      
        self._W1 = self.add_weight(shape=(input_dim, input_dim), name="{}_W1".format(self.name), initializer=self.weight_initializer)
        self._W2 = self.add_weight(shape=(output_dim, input_dim), name="{}_W2".format(self.name), initializer=self.weight_initializer)
        self._W3 = self.add_weight(shape=(2*input_dim, input_dim), name="{}_W3".format(self.name), initializer=self.weight_initializer)
        self._b2 = self.add_weight(shape=(input_dim,), name="{}_b2".format(self.name), initializer=self.weight_initializer)
        self._b3 = self.add_weight(shape=(input_dim,), name="{}_b3".format(self.name), initializer=self.weight_initializer)
        self._V = self.add_weight(shape=(input_dim,1), name="{}_V".format(self.name), initializer=self.weight_initializer)
        
        super(AttentionRNNWrapper, self).build() 
開發者ID:zimmerrol,項目名稱:keras-utility-layer-collection,代碼行數:26,代碼來源:attention.py

示例2: __init__

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import InputSpec [as 別名]
def __init__(self, nb_filters_in, nb_filters_out, nb_filters_att, nb_rows, nb_cols,
                 init='normal', inner_init='orthogonal', attentive_init='zero',
                 activation='tanh', inner_activation='sigmoid',
                 W_regularizer=None, U_regularizer=None,
                 weights=None, go_backwards=False,
                 **kwargs):
        self.nb_filters_in = nb_filters_in
        self.nb_filters_out = nb_filters_out
        self.nb_filters_att = nb_filters_att
        self.nb_rows = nb_rows
        self.nb_cols = nb_cols
        self.init = initializations.get(init)
        self.inner_init = initializations.get(inner_init)
        self.attentive_init = initializations.get(attentive_init)
        self.activation = activations.get(activation)
        self.inner_activation = activations.get(inner_activation)
        self.initial_weights = weights
        self.go_backwards = go_backwards

        self.W_regularizer = W_regularizer
        self.U_regularizer = U_regularizer
        self.input_spec = [InputSpec(ndim=5)]

        super(AttentiveConvLSTM, self).__init__(**kwargs) 
開發者ID:marcellacornia,項目名稱:sam,代碼行數:26,代碼來源:attentive_convlstm.py

示例3: __init__

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import InputSpec [as 別名]
def __init__(self, output_dim, init='glorot_uniform', activation='relu',weights=None,
            W_regularizer=None, b_regularizer=None, activity_regularizer=None,
            W_constraint=None, b_constraint=None, input_dim=None, **kwargs):
        self.W_initializer = initializers.get(init)
        self.b_initializer = initializers.get('zeros')
        self.activation = activations.get(activation)
        self.output_dim = output_dim
        self.input_dim = input_dim

        self.W_regularizer = regularizers.get(W_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)

        self.W_constraint = constraints.get(W_constraint)
        self.b_constraint = constraints.get(b_constraint)
        self.initial_weights = weights
        self.input_spec = InputSpec(ndim=2)

        if self.input_dim:
            kwargs['input_shape'] = (self.input_dim,)
        super(SparseFullyConnectedLayer, self).__init__(**kwargs) 
開發者ID:yangliuy,項目名稱:NeuralResponseRanking,代碼行數:23,代碼來源:SparseFullyConnectedLayer.py

示例4: build

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import InputSpec [as 別名]
def build(self, input_shape):
        assert len(input_shape) == 2
        input_dim = input_shape[1]
        #self.input_spec = InputSpec(dtype=K.floatx(), shape=(None, input_dim))
        self.input_spec = InputSpec(ndim=2, axes={1: input_dim})

        self.W = self.add_weight(
                shape=(input_dim, self.output_dim),
                initializer=self.W_initializer,
                name='SparseFullyConnected_W',
                regularizer=self.W_regularizer,
                constraint=self.W_constraint)
        self.b = self.add_weight(
                shape=(self.output_dim,),
                initializer=self.b_initializer,
                name='SparseFullyConnected_b',
                regularizer=self.b_regularizer,
                constraint=self.b_constraint)


        if self.initial_weights is not None:
            self.set_weights(self.initial_weights)
            del self.initial_weights
        #self.built = True
        #super(SparseFullyConnectedLayer, self).build(input_shape) 
開發者ID:yangliuy,項目名稱:NeuralResponseRanking,代碼行數:27,代碼來源:SparseFullyConnectedLayer.py

示例5: build

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import InputSpec [as 別名]
def build(self, input_shape):
        input_dim = input_shape[2]
        self.input_dim = input_dim
        self.input_spec = [InputSpec(shape=input_shape)]
        self.kernel_shape = (self.window_size, 1, input_dim, self.output_dim * 2)
        self.kernel = self.add_weight(self.kernel_shape,
                                      initializer=self.kernel_initializer,
                                      name='kernel',
                                      regularizer=self.kernel_regularizer,
                                      constraint=self.kernel_constraint)

        if self.use_bias:
            self.bias = self.add_weight((self.output_dim * 2,),
                                        initializer=self.bias_initializer,
                                        name='b',
                                        regularizer=self.bias_regularizer,
                                        constraint=self.bias_constraint)

        self.built = True 
開發者ID:DingKe,項目名稱:nn_playground,代碼行數:21,代碼來源:gcnn.py

示例6: __init__

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import InputSpec [as 別名]
def __init__(self, ch_j, n_j,
                 r_num=1,
                 b_alphas=[8, 8, 8],
                 kernel_initializer='glorot_uniform',
                 kernel_regularizer=None,
                 activity_regularizer=None,
                 kernel_constraint=None,
                 **kwargs):
        if 'input_shape' not in kwargs and 'input_dim' in kwargs:
            kwargs['input_shape'] = (kwargs.pop('input_dim'),)
        super(DenseCaps, self).__init__(**kwargs)
        self.ch_j = ch_j  # number of capsules in layer J
        self.n_j = n_j  # number of neurons in a capsule in J
        self.r_num = r_num
        self.b_alphas = b_alphas
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint)
        self.input_spec = InputSpec(min_ndim=3)
        self.supports_masking = True 
開發者ID:brjathu,項目名稱:deepcaps,代碼行數:23,代碼來源:capslayers.py

示例7: call

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import InputSpec [as 別名]
def call(self, x, mask=None, **kwargs):
        input_shape = K.int_shape(x)
        res = super(ShareableGRU, self).call(x, mask, **kwargs)
        self.input_spec = [InputSpec(shape=(self.input_spec[0].shape[0],
                                            None,
                                            self.input_spec[0].shape[2]))]
        if K.ndim(x) == K.ndim(res):
            # A recent change in Keras
            # (https://github.com/fchollet/keras/commit/a9b6bef0624c67d6df1618ca63d8e8141b0df4d0)
            # made it so that K.rnn with a tensorflow backend does not retain shape information for
            # the sequence length, even if it's present in the input.  We need to fix that here so
            # that our models have the right shape information.  A simple K.reshape is good enough
            # to fix this.
            result_shape = K.int_shape(res)
            if input_shape[1] is not None and result_shape[1] is None:
                shape = (input_shape[0] if input_shape[0] is not None else -1,
                         input_shape[1], result_shape[2])
                res = K.reshape(res, shape=shape)
        return res 
開發者ID:allenai,項目名稱:deep_qa,代碼行數:21,代碼來源:shareable_gru.py

示例8: build

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import InputSpec [as 別名]
def build(self, input_shape):
        if isinstance(input_shape, tuple):
            input_shape = [input_shape]
        assert all(len(shape) >= 3 for shape in input_shape), "Need 3 dims to TimeDistribute"
        all_timesteps = [i[1] for i in input_shape]
        assert len(set(all_timesteps)) == 1, "Tensors must have same number of timesteps"
        self.input_spec = [InputSpec(shape=shape) for shape in input_shape]
        if not self.layer.built:
            child_input_shape = [(shape[0],) + shape[2:] for shape in input_shape]
            if len(input_shape) == 1:
                child_input_shape = child_input_shape[0]
            self.layer.build(child_input_shape)
            self.layer.built = True
        self.built = True
        # It's important that we call Wrapper.build() here, because it sets some important member
        # variables.  But we can't call KerasTimeDistributed.build(), because it assumes only one
        # input, which we're trying to fix.  So we use super(KerasTimeDistributed, self).build()
        # here on purpose - this is not a copy-paste bug.
        super(KerasTimeDistributed, self).build(input_shape)  # pylint: disable=bad-super-call 
開發者ID:allenai,項目名稱:deep_qa,代碼行數:21,代碼來源:time_distributed.py

示例9: __init__

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import InputSpec [as 別名]
def __init__(self, layer, weight_initializer="glorot_uniform", return_attention=False, **kwargs):
        assert isinstance(layer, RNN)
        self.layer = layer
        self.supports_masking = True
        self.weight_initializer = weight_initializer
        self.return_attention = return_attention
        self._num_constants = None

        super(ExternalAttentionRNNWrapper, self).__init__(layer, **kwargs)

        self.input_spec = [InputSpec(ndim=3), InputSpec(ndim=3)] 
開發者ID:zimmerrol,項目名稱:keras-utility-layer-collection,代碼行數:13,代碼來源:attention.py

示例10: __init__

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import InputSpec [as 別名]
def __init__(self, units,
                 activation=None,
                 use_bias=True,
                 init_criterion='he',
                 kernel_initializer='complex',
                 bias_initializer='zeros',
                 kernel_regularizer=None,
                 bias_regularizer=None,
                 activity_regularizer=None,
                 kernel_constraint=None,
                 bias_constraint=None,
                 seed=None,
                 **kwargs):
        if 'input_shape' not in kwargs and 'input_dim' in kwargs:
            kwargs['input_shape'] = (kwargs.pop('input_dim'),)
        super(ComplexDense, self).__init__(**kwargs)
        self.units = units
        self.activation = activations.get(activation)
        self.use_bias = use_bias
        self.init_criterion = init_criterion
        if kernel_initializer in {'complex'}:
            self.kernel_initializer = kernel_initializer
        else:
            self.kernel_initializer = initializers.get(kernel_initializer)
        self.bias_initializer = initializers.get(bias_initializer)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.bias_regularizer = regularizers.get(bias_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint)
        self.bias_constraint = constraints.get(bias_constraint)
        if seed is None:
            self.seed = np.random.randint(1, 10e6)
        else:
            self.seed = seed
        self.input_spec = InputSpec(ndim=2)
        self.supports_masking = True 
開發者ID:ChihebTrabelsi,項目名稱:deep_complex_networks,代碼行數:38,代碼來源:dense.py

示例11: build

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import InputSpec [as 別名]
def build(self, input_shape):
        self.input_spec = InputSpec(ndim=len(input_shape),
                                    axes={self.axis: input_shape[self.axis]})
        shape = (input_shape[self.axis],)

        self.gamma = self.add_weight(shape,
                                     initializer=self.gamma_init,
                                     regularizer=self.gamma_regularizer,
                                     name='{}_gamma'.format(self.name))
        self.beta = self.add_weight(shape,
                                    initializer=self.beta_init,
                                    regularizer=self.beta_regularizer,
                                    name='{}_beta'.format(self.name))

        self.built = True 
開發者ID:ChihebTrabelsi,項目名稱:deep_complex_networks,代碼行數:17,代碼來源:norm.py

示例12: build

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import InputSpec [as 別名]
def build(self, input_shape):
        kernel_shape_f_g = (1, 1) + (self.channels, self.filters_f_g)
        kernel_shape_h = (1, 1) + (self.channels, self.filters_h)

        # Create a trainable weight variable for this layer:
        self.gamma = self.add_weight(name='gamma', shape=[1], initializer='zeros', trainable=True)
        self.kernel_f = self.add_weight(shape=kernel_shape_f_g,
                                        initializer='glorot_uniform',
                                        name='kernel_f')
        self.kernel_g = self.add_weight(shape=kernel_shape_f_g,
                                        initializer='glorot_uniform',
                                        name='kernel_g')
        self.kernel_h = self.add_weight(shape=kernel_shape_h,
                                        initializer='glorot_uniform',
                                        name='kernel_h')
        self.bias_f = self.add_weight(shape=(self.filters_f_g,),
                                      initializer='zeros',
                                      name='bias_F')
        self.bias_g = self.add_weight(shape=(self.filters_f_g,),
                                      initializer='zeros',
                                      name='bias_g')
        self.bias_h = self.add_weight(shape=(self.filters_h,),
                                      initializer='zeros',
                                      name='bias_h')
        super(Attention, self).build(input_shape)
        # Set input spec.
        self.input_spec = InputSpec(ndim=4,
                                    axes={3: input_shape[-1]})
        self.built = True 
開發者ID:emilwallner,項目名稱:Coloring-greyscale-images,代碼行數:31,代碼來源:attention.py

示例13: build

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import InputSpec [as 別名]
def build(self, input_shape):
        # This currently only works for 4D inputs: assuming (B, H, W, C)
        self.input_spec = [InputSpec(shape=input_shape)]
        shape = (1, 1, 1, input_shape[-1])

        self.gamma = self.gamma_init(shape, name='{}_gamma'.format(self.name))
        self.beta = self.beta_init(shape, name='{}_beta'.format(self.name))
        self.trainable_weights = [self.gamma, self.beta]

        self.built = True 
開發者ID:robertomest,項目名稱:neural-style-keras,代碼行數:12,代碼來源:layers.py

示例14: __init__

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import InputSpec [as 別名]
def __init__(self, units,
                 activation=None,
                 use_bias=True,
                 init_criterion='he',
                 kernel_initializer='quaternion',
                 bias_initializer='zeros',
                 kernel_regularizer=None,
                 bias_regularizer=None,
                 activity_regularizer=None,
                 kernel_constraint=None,
                 bias_constraint=None,
                 seed=None,
                 **kwargs):
        if 'input_shape' not in kwargs and 'input_dim' in kwargs:
            kwargs['input_shape'] = (kwargs.pop('input_dim'),)
        super(QuaternionDense, self).__init__(**kwargs)
        self.units = units
        self.q_units = units // 4
        self.activation = activations.get(activation)
        self.use_bias = use_bias
        self.init_criterion = init_criterion
        self.kernel_initializer = kernel_initializer
        self.bias_initializer = initializers.get(bias_initializer)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.bias_regularizer = regularizers.get(bias_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint)
        self.bias_constraint = constraints.get(bias_constraint)
        if seed is None:
            self.seed = np.random.randint(1, 10e6)
        else:
            self.seed = seed
        self.input_spec = InputSpec(ndim=2)
        self.supports_masking = True 
開發者ID:Orkis-Research,項目名稱:Quaternion-Convolutional-Neural-Networks-for-End-to-End-Automatic-Speech-Recognition,代碼行數:36,代碼來源:dense.py

示例15: build

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import InputSpec [as 別名]
def build(self, input_shape):
        assert len(input_shape) == 2
        assert input_shape[-1] % 2 == 0
        input_dim = input_shape[-1] // 4
        data_format = K.image_data_format()
        kernel_shape = (input_dim, self.units)
        init_shape = (input_dim, self.q_units)
        
        self.kernel_init = qdense_init(init_shape, self.init_criterion)

        self.kernel = self.add_weight(
            shape=kernel_shape,
            initializer=self.kernel_init,
            name='r',
            regularizer=self.kernel_regularizer,
            constraint=self.kernel_constraint
        )

        
        if self.use_bias:
            self.bias = self.add_weight(
                shape=(self.units,),
                initializer='zeros',
                name='bias',
                regularizer=self.bias_regularizer,
                constraint=self.bias_constraint
            )
        else:
            self.bias = None

        self.input_spec = InputSpec(ndim=2, axes={-1: 4 * input_dim})
        self.built = True 
開發者ID:Orkis-Research,項目名稱:Quaternion-Convolutional-Neural-Networks-for-End-to-End-Automatic-Speech-Recognition,代碼行數:34,代碼來源:dense.py


注:本文中的keras.layers.InputSpec方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。