本文整理匯總了Python中keras.layers.InputLayer方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.InputLayer方法的具體用法?Python layers.InputLayer怎麽用?Python layers.InputLayer使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類keras.layers
的用法示例。
在下文中一共展示了layers.InputLayer方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: build_model
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import InputLayer [as 別名]
def build_model():
model = Sequential()
model.add(InputLayer(input_shape=(None, None, 1)))
model.add(Conv2D(8, (3, 3), activation='relu', padding='same', strides=2))
model.add(Conv2D(8, (3, 3), activation='relu', padding='same'))
model.add(Conv2D(16, (3, 3), activation='relu', padding='same'))
model.add(Conv2D(16, (3, 3), activation='relu', padding='same', strides=2))
model.add(Conv2D(32, (3, 3), activation='relu', padding='same'))
model.add(Conv2D(32, (3, 3), activation='relu', padding='same', strides=2))
model.add(UpSampling2D((2, 2)))
model.add(Conv2D(32, (3, 3), activation='relu', padding='same'))
model.add(UpSampling2D((2, 2)))
model.add(Conv2D(16, (3, 3), activation='relu', padding='same'))
model.add(UpSampling2D((2, 2)))
model.add(Conv2D(2, (3, 3), activation='tanh', padding='same'))
# model.compile(optimizer='rmsprop', loss='mse')
model.compile(optimizer='adam', loss='mse')
return model
#訓練數據
示例2: fsrcnn
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import InputLayer [as 別名]
def fsrcnn(x, d=56, s=12, m=4, scale=3):
"""Build an FSRCNN model.
See https://arxiv.org/abs/1608.00367
"""
model = Sequential()
model.add(InputLayer(input_shape=x.shape[-3:]))
c = x.shape[-1]
f = [5, 1] + [3] * m + [1]
n = [d, s] + [s] * m + [d]
for ni, fi in zip(n, f):
model.add(Conv2D(ni, fi, padding='same',
kernel_initializer='he_normal', activation='relu'))
model.add(Conv2DTranspose(c, 9, strides=scale, padding='same',
kernel_initializer='he_normal'))
return model
示例3: nsfsrcnn
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import InputLayer [as 別名]
def nsfsrcnn(x, d=56, s=12, m=4, scale=3, pos=1):
"""Build an FSRCNN model, but change deconv position.
See https://arxiv.org/abs/1608.00367
"""
model = Sequential()
model.add(InputLayer(input_shape=x.shape[-3:]))
c = x.shape[-1]
f1 = [5, 1] + [3] * pos
n1 = [d, s] + [s] * pos
f2 = [3] * (m - pos - 1) + [1]
n2 = [s] * (m - pos - 1) + [d]
f3 = 9
n3 = c
for ni, fi in zip(n1, f1):
model.add(Conv2D(ni, fi, padding='same',
kernel_initializer='he_normal', activation='relu'))
model.add(Conv2DTranspose(s, 3, strides=scale, padding='same',
kernel_initializer='he_normal'))
for ni, fi in zip(n2, f2):
model.add(Conv2D(ni, fi, padding='same',
kernel_initializer='he_normal', activation='relu'))
model.add(Conv2D(n3, f3, padding='same',
kernel_initializer='he_normal'))
return model
示例4: espcn
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import InputLayer [as 別名]
def espcn(x, f=[5, 3, 3], n=[64, 32], scale=3):
"""Build an ESPCN model.
See https://arxiv.org/abs/1609.05158
"""
assert len(f) == len(n) + 1
model = Sequential()
model.add(InputLayer(input_shape=x.shape[1:]))
c = x.shape[-1]
for ni, fi in zip(n, f):
model.add(Conv2D(ni, fi, padding='same',
kernel_initializer='he_normal', activation='tanh'))
model.add(Conv2D(c * scale ** 2, f[-1], padding='same',
kernel_initializer='he_normal'))
model.add(Conv2DSubPixel(scale))
return model
示例5: make_model_small
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import InputLayer [as 別名]
def make_model_small(train_input, num_classes, weights_file=None):
'''Return Cifar10 DL model with small number layers.'''
model = Sequential()
# model.add(KL.InputLayer(input_shape=inshape[1:]))
if isinstance(train_input, tf.Tensor):
model.add(KL.InputLayer(input_tensor=train_input))
else:
model.add(KL.InputLayer(input_shape=train_input))
# if standardize:
# model.add(KL.Lambda(stand_img))
model.add(KL.Conv2D(32, (3, 3), padding='same'))
model.add(KL.Activation('relu'))
model.add(KL.Flatten())
# model.add(Dropout(0.5))
model.add(KL.Dense(num_classes))
model.add(KL.Activation('softmax'))
if weights_file is not None and os.path.exists(weights_file):
model.load_weights(weights_file)
return model
示例6: compute_output_shape
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import InputLayer [as 別名]
def compute_output_shape(self, input_shape):
return input_shape
# class LocalParam(InputLayer):
# def __init__(self, shape, mult=1, my_initializer='RandomNormal', **kwargs):
# super(LocalParam, self).__init__(input_shape=shape, **kwargs)
# # Create a trainable weight variable for this layer.
# self.kernel = self.add_weight(name='kernel',
# shape=tuple(shape),
# initializer=my_initializer,
# trainable=True)
# outputs = self._inbound_nodes[0].output_tensors
# z = Input(tensor=K.expand_dims(self.kernel, 0)*mult)
# if len(outputs) == 1:
# self._inbound_nodes[0].output_tensors[0] = z
# else:
# self._inbound_nodes[0].output_tensors = z
# def get_output(self): # call() would force inputs
# outputs = self._inbound_nodes[0].output_tensors
# if len(outputs) == 1:
# return outputs[0]
# else:
# return outputs
示例7: bicubic
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import InputLayer [as 別名]
def bicubic(x, scale=3):
model = Sequential()
model.add(InputLayer(input_shape=x.shape[-3:]))
model.add(ImageRescale(scale, method=tf.image.ResizeMethod.BICUBIC))
return model
示例8: make_model
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import InputLayer [as 別名]
def make_model(inshape, num_classes, weights_file=None):
model = Sequential()
model.add(KL.InputLayer(input_shape=inshape[1:]))
# model.add(KL.Conv2D(32, (3, 3), padding='same', input_shape=inshape[1:]))
model.add(KL.Conv2D(32, (3, 3), padding='same'))
model.add(KL.Activation('relu'))
model.add(KL.Conv2D(32, (3, 3)))
model.add(KL.Activation('relu'))
model.add(KL.MaxPooling2D(pool_size=(2, 2)))
model.add(KL.Dropout(0.25))
model.add(KL.Conv2D(64, (3, 3), padding='same'))
model.add(KL.Activation('relu'))
model.add(KL.Conv2D(64, (3, 3)))
model.add(KL.Activation('relu'))
model.add(KL.MaxPooling2D(pool_size=(2, 2)))
model.add(KL.Dropout(0.25))
model.add(KL.Flatten())
model.add(KL.Dense(512))
model.add(KL.Activation('relu'))
model.add(KL.Dropout(0.5))
model.add(KL.Dense(num_classes))
model.add(KL.Activation('softmax'))
if weights_file is not None and os.path.exists(weights_file):
model.load_weights(weights_file)
return model
示例9: make_model
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import InputLayer [as 別名]
def make_model(x_train_input, nclasses):
'''Non-functional model definition.'''
model = Sequential()
model.add(KL.InputLayer(input_tensor=x_train_input))
ll = cnn_layers_list(nclasses)
for il in ll:
model.add(il)
return model
示例10: make_model_full
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import InputLayer [as 別名]
def make_model_full(train_input, num_classes, weights_file=None):
'''Return Cifar10 DL model with many layers.
:param train_input: Either a tf.Tensor input placeholder/pipeline, or a
tuple input shape.
'''
model = Sequential()
# model.add(KL.InputLayer(input_shape=inshape[1:]))
if isinstance(train_input, tf.Tensor):
model.add(KL.InputLayer(input_tensor=train_input))
else:
model.add(KL.InputLayer(input_shape=train_input))
# if standardize:
# model.add(KL.Lambda(stand_img))
model.add(KL.Conv2D(32, (3, 3), padding='same'))
model.add(KL.Activation('relu'))
model.add(KL.Conv2D(32, (3, 3)))
model.add(KL.Activation('relu'))
model.add(KL.MaxPooling2D(pool_size=(2, 2)))
model.add(KL.Dropout(0.25))
model.add(KL.Conv2D(64, (3, 3), padding='same'))
model.add(KL.Activation('relu'))
model.add(KL.Conv2D(64, (3, 3)))
model.add(KL.Activation('relu'))
model.add(KL.MaxPooling2D(pool_size=(2, 2)))
model.add(KL.Dropout(0.25))
model.add(KL.Flatten())
model.add(KL.Dense(512))
model.add(KL.Activation('relu'))
model.add(KL.Dropout(0.5))
model.add(KL.Dense(num_classes))
model.add(KL.Activation('softmax'))
if weights_file is not None and os.path.exists(weights_file):
model.load_weights(weights_file)
return model