當前位置: 首頁>>代碼示例>>Python>>正文


Python layers.GlobalAveragePooling3D方法代碼示例

本文整理匯總了Python中keras.layers.GlobalAveragePooling3D方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.GlobalAveragePooling3D方法的具體用法?Python layers.GlobalAveragePooling3D怎麽用?Python layers.GlobalAveragePooling3D使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.layers的用法示例。


在下文中一共展示了layers.GlobalAveragePooling3D方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: squeeze_excitation_block_3D

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import GlobalAveragePooling3D [as 別名]
def squeeze_excitation_block_3D(inputSE, ratio=16):
    '''
    Creates a squeeze and excitation block
    :param input: input tensor
    :param ratio: reduction ratio r for bottleneck given by the two FC layers
    :return: keras tensor
    '''

    if backend.image_data_format() == 'channels_first':
        channels = 1
    else:
        channels = -1

    # number of input filters/channels
    inputSE_shape = backend.int_shape(inputSE)
    numChannels = inputSE_shape[channels]

    #squeeze operation
    output = GlobalAveragePooling3D(data_format=backend.image_data_format())(inputSE)

    #excitation operation
    output = Dense(numChannels//ratio, activation='relu', use_bias=True, kernel_initializer='he_normal')(output)
    output = Dense(numChannels, activation='sigmoid', use_bias=True, kernel_initializer='he_normal')(output)

    #scale operation
    output = multiply([inputSE, output])

    return output 
開發者ID:thomaskuestner,項目名稱:CNNArt,代碼行數:30,代碼來源:squeeze_excitation_block.py

示例2: fCreateModel_FCN_simple

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import GlobalAveragePooling3D [as 別名]
def fCreateModel_FCN_simple(patchSize,dr_rate=0.0, iPReLU=0, l1_reg=0.0, l2_reg=1e-6):
    # Total params: 1,223,831
    # Replace the dense layer with a convolutional layer with filters=2 for the two classes
    Strides = fgetStrides()
    kernelnumber = fgetKernelNumber()
    inp = Input(shape=(1, int(patchSize[0]), int(patchSize[1]), int(patchSize[2])))

    after_Conv_1 = fCreateVNet_Block(inp, kernelnumber[0], type=fgetLayerNumConv(), l2_reg=l2_reg)
    after_DownConv_1 = fCreateVNet_DownConv_Block(after_Conv_1, after_Conv_1._keras_shape[1], Strides[0],
                                                     iPReLU=iPReLU, dr_rate=dr_rate, l2_reg=l2_reg)

    after_Conv_2 = fCreateVNet_Block(after_DownConv_1, kernelnumber[1], type=fgetLayerNumConv(), l2_reg=l2_reg)
    after_DownConv_2 = fCreateVNet_DownConv_Block(after_Conv_2, after_Conv_2._keras_shape[1], Strides[1],
                                                   iPReLU=iPReLU, dr_rate=dr_rate, l2_reg=l2_reg)

    after_Conv_3 = fCreateVNet_Block(after_DownConv_2, kernelnumber[2], type=fgetLayerNumConv(), l2_reg=l2_reg)
    after_DownConv_3 = fCreateVNet_DownConv_Block(after_Conv_3, after_Conv_3._keras_shape[1], Strides[2],
                                                   iPReLU=iPReLU, dr_rate=dr_rate, l2_reg=l2_reg)

    dropout_out = Dropout(dr_rate)(after_DownConv_3)
    fclayer = Conv3D(2,
                       kernel_size=(1,1,1),
                       kernel_initializer='he_normal',
                       weights=None,
                       padding='valid',
                       strides=(1, 1, 1),
                       kernel_regularizer=l1_l2(l1_reg, l2_reg),
                       )(dropout_out)
    fclayer = GlobalAveragePooling3D()(fclayer)
    outp = Activation('softmax')(fclayer)
    cnn_spp = Model(inputs=inp, outputs=outp)
    return cnn_spp 
開發者ID:thomaskuestner,項目名稱:CNNArt,代碼行數:34,代碼來源:MSnetworks.py

示例3: preds3d_baseline

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import GlobalAveragePooling3D [as 別名]
def preds3d_baseline(width):
    
    learning_rate = 5e-5
    #optimizer = SGD(lr=learning_rate, momentum = 0.9, decay = 1e-3, nesterov = True)
    optimizer = Adam(lr=learning_rate)
    
    inputs = Input(shape=(1, 136, 168, 168))
    conv1 = Convolution3D(width, 3, 3, 3, activation = 'relu', border_mode='same')(inputs)
    conv1 = BatchNormalization(axis = 1)(conv1)
    conv1 = Convolution3D(width*2, 3, 3, 3, activation = 'relu', border_mode='same')(conv1)
    conv1 = BatchNormalization(axis = 1)(conv1)
    pool1 = MaxPooling3D(pool_size=(2, 2, 2), border_mode='same')(conv1)
    
    conv2 = Convolution3D(width*2, 3, 3, 3, activation = 'relu', border_mode='same')(pool1)
    conv2 = BatchNormalization(axis = 1)(conv2)
    conv2 = Convolution3D(width*4, 3, 3, 3, activation = 'relu', border_mode='same')(conv2)
    conv2 = BatchNormalization(axis = 1)(conv2)
    pool2 = MaxPooling3D(pool_size=(2, 2, 2), border_mode='same')(conv2)

    conv3 = Convolution3D(width*4, 3, 3, 3, activation = 'relu', border_mode='same')(pool2)
    conv3 = BatchNormalization(axis = 1)(conv3)
    conv3 = Convolution3D(width*8, 3, 3, 3, activation = 'relu', border_mode='same')(conv3)
    conv3 = BatchNormalization(axis = 1)(conv3)
    pool3 = MaxPooling3D(pool_size=(2, 2, 2), border_mode='same')(conv3)
    
    output = GlobalAveragePooling3D()(pool3)
    output = Dense(2, activation='softmax', name = 'predictions')(output)
    model3d = Model(inputs, output)
    model3d.compile(loss='categorical_crossentropy', optimizer = optimizer, metrics = ['accuracy'])
    return model3d 
開發者ID:Wrosinski,項目名稱:Kaggle-DSB,代碼行數:32,代碼來源:preds3d_models.py

示例4: preds3d_globalavg

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import GlobalAveragePooling3D [as 別名]
def preds3d_globalavg(width):
    
    learning_rate = 5e-5
    #optimizer = SGD(lr=learning_rate, momentum = 0.9, decay = 1e-3, nesterov = True)
    optimizer = Adam(lr=learning_rate)
    
    inputs = Input(shape=(1, 136, 168, 168))
    conv1 = Convolution3D(width, 3, 3, 3, activation = 'relu', border_mode='same')(inputs)
    conv1 = BatchNormalization(axis = 1)(conv1)
    conv1 = Convolution3D(width*2, 3, 3, 3, activation = 'relu', border_mode='same')(conv1)
    conv1 = BatchNormalization(axis = 1)(conv1)
    pool1 = MaxPooling3D(pool_size=(2, 2, 2), border_mode='same')(conv1)
    
    conv2 = Convolution3D(width*2, 3, 3, 3, activation = 'relu', border_mode='same')(pool1)
    conv2 = BatchNormalization(axis = 1)(conv2)
    conv2 = Convolution3D(width*4, 3, 3, 3, activation = 'relu', border_mode='same')(conv2)
    conv2 = BatchNormalization(axis = 1)(conv2)
    pool2 = MaxPooling3D(pool_size=(2, 2, 2), border_mode='same')(conv2)

    conv3 = Convolution3D(width*4, 3, 3, 3, activation = 'relu', border_mode='same')(pool2)
    conv3 = BatchNormalization(axis = 1)(conv3)
    conv3 = Convolution3D(width*8, 3, 3, 3, activation = 'relu', border_mode='same')(conv3)
    conv3 = BatchNormalization(axis = 1)(conv3)
    pool3 = MaxPooling3D(pool_size=(2, 2, 2), border_mode='same')(conv3)
    
    conv4 = Convolution3D(width*8, 3, 3, 3, activation = 'relu', border_mode='same')(pool3)
    conv4 = BatchNormalization(axis = 1)(conv4)
    conv4 = Convolution3D(width*16, 3, 3, 3, activation = 'relu', border_mode='same')(conv4)
    conv4 = BatchNormalization(axis = 1)(conv4)
    pool4 = MaxPooling3D(pool_size=(8, 8, 8), border_mode='same')(conv4)
    
    output = GlobalAveragePooling3D()(conv4)
    output = Dense(2, activation='softmax', name = 'predictions')(output)
    model3d = Model(inputs, output)
    model3d.compile(loss='categorical_crossentropy', optimizer = optimizer, metrics = ['accuracy'])
    return model3d 
開發者ID:Wrosinski,項目名稱:Kaggle-DSB,代碼行數:38,代碼來源:preds3d_models.py

示例5: preds3d_baseline

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import GlobalAveragePooling3D [as 別名]
def preds3d_baseline(width):
    
    learning_rate = 5e-5
    optimizer = SGD(lr=learning_rate, momentum = 0.9, decay = 1e-3, nesterov = True)
    #optimizer = Adam(lr=learning_rate)
    
    inputs = Input(shape=(1, 136, 168, 168))
    conv1 = Convolution3D(width, 3, 3, 3, activation = 'relu', border_mode='same')(inputs)
    conv1 = BatchNormalization(axis = 1)(conv1)
    conv1 = Convolution3D(width*2, 3, 3, 3, activation = 'relu', border_mode='same')(conv1)
    conv1 = BatchNormalization(axis = 1)(conv1)
    pool1 = MaxPooling3D(pool_size=(2, 2, 2), border_mode='same')(conv1)
    
    conv2 = Convolution3D(width*2, 3, 3, 3, activation = 'relu', border_mode='same')(pool1)
    conv2 = BatchNormalization(axis = 1)(conv2)
    conv2 = Convolution3D(width*4, 3, 3, 3, activation = 'relu', border_mode='same')(conv2)
    conv2 = BatchNormalization(axis = 1)(conv2)
    pool2 = MaxPooling3D(pool_size=(2, 2, 2), border_mode='same')(conv2)

    conv3 = Convolution3D(width*4, 3, 3, 3, activation = 'relu', border_mode='same')(pool2)
    conv3 = BatchNormalization(axis = 1)(conv3)
    conv3 = Convolution3D(width*8, 3, 3, 3, activation = 'relu', border_mode='same')(conv3)
    conv3 = BatchNormalization(axis = 1)(conv3)
    pool3 = MaxPooling3D(pool_size=(2, 2, 2), border_mode='same')(conv3)
    
    output = GlobalAveragePooling3D()(pool3)
    output = Dense(2, activation='softmax', name = 'predictions')(output)
    model3d = Model(inputs, output)
    model3d.compile(loss='categorical_crossentropy', optimizer = optimizer, metrics = ['accuracy'])
    return model3d


# 1398 stage1 original examples 
開發者ID:Wrosinski,項目名稱:Kaggle-DSB,代碼行數:35,代碼來源:preds3d_run.py

示例6: createModel

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import GlobalAveragePooling3D [as 別名]
def createModel(patchSize, numClasses):
    if K.image_data_format() == 'channels_last':
        bn_axis = -1
    else:
        bn_axis = 1

    growthRate_k = 12
    compressionFactor = 0.5

    input_tensor = Input(shape=(patchSize[0], patchSize[1], patchSize[2], 1))

    # first conv layer
    x = Conv3D(16, (3, 3, 3), strides=(1, 1, 1), padding='same', kernel_initializer='he_normal')(input_tensor)

    # 1. Dense Block
    x, numFilters = dense_block_3D(x, numInputFilters=16, numLayers=7, growthRate_k=growthRate_k,
                                   bottleneck_enabled=True)

    # Transition Layer
    x, numFilters = transition_SE_layer_3D(x, numFilters, compressionFactor=compressionFactor, se_ratio=8)

    # 2. Dense Block
    x, numFilters = dense_block_3D(x, numInputFilters=numFilters, numLayers=7, growthRate_k=growthRate_k,
                                   bottleneck_enabled=True)

    # Transition Layer
    x, numFilters = transition_SE_layer_3D(x, numFilters, compressionFactor=compressionFactor, se_ratio=8)

    # 3. Dense Block
    x, numFilters = dense_block_3D(x, numInputFilters=numFilters, numLayers=7, growthRate_k=growthRate_k,
                                   bottleneck_enabled=True)

    # SE Block
    x = squeeze_excitation_block_3D(x, ratio=16)

    x = BatchNormalization(axis=bn_axis)(x)
    x = Activation('relu')(x)

    # global average pooling
    x = GlobalAveragePooling3D(data_format='channels_last')(x)

    # fully-connected layer
    output = Dense(units=numClasses,
                   activation='softmax',
                   kernel_initializer='he_normal',
                   name='fully-connected')(x)

    # create model
    cnn = Model(input_tensor, output, name='3D-DenseNet-34')
    sModelName = '3D-DenseNet-34'

    return cnn, sModelName 
開發者ID:thomaskuestner,項目名稱:CNNArt,代碼行數:54,代碼來源:multiclass_3D_SE-DenseNet-BC.py

示例7: createModel

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import GlobalAveragePooling3D [as 別名]
def createModel(patchSize, numClasses):
    if K.image_data_format() == 'channels_last':
        bn_axis = -1
    else:
        bn_axis = 1

    growthRate_k = 12
    compressionFactor = 1.0

    input_tensor = Input(shape=(patchSize[0], patchSize[1], patchSize[2], 1))

    # first conv layer
    x = Conv3D(16, (3, 3, 3), strides=(1, 1, 1), padding='same', kernel_initializer='he_normal')(input_tensor)

    # 1. Dense Block
    x, numFilters = dense_block_3D(x, numInputFilters=16, numLayers=10, growthRate_k=growthRate_k,
                                   bottleneck_enabled=True)

    # Transition Layer
    x, numFilters = transition_SE_layer_3D(x, numFilters, compressionFactor=compressionFactor, se_ratio=16)

    # 2. Dense Block
    x, numFilters = dense_block_3D(x, numInputFilters=numFilters, numLayers=10, growthRate_k=growthRate_k,
                                   bottleneck_enabled=True)

    # Transition Layer
    x, numFilters = transition_SE_layer_3D(x, numFilters, compressionFactor=compressionFactor, se_ratio=16)

    # 3. Dense Block
    x, numFilters = dense_block_3D(x, numInputFilters=numFilters, numLayers=10, growthRate_k=growthRate_k,
                                   bottleneck_enabled=True)

    # SE Block
    x = squeeze_excitation_block_3D(x, ratio=16)

    x = BatchNormalization(axis=bn_axis)(x)
    x = Activation('relu')(x)

    # global average pooling
    x = GlobalAveragePooling3D(data_format='channels_last')(x)

    # fully-connected layer
    output = Dense(units=numClasses,
                   activation='softmax',
                   kernel_initializer='he_normal',
                   name='fully-connected')(x)

    # create model
    cnn = Model(input_tensor, output, name='3D-DenseNet-34')
    sModelName = '3D-DenseNet-34'

    return cnn, sModelName 
開發者ID:thomaskuestner,項目名稱:CNNArt,代碼行數:54,代碼來源:multiclass_3D_SE-DenseNet.py

示例8: createModel

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import GlobalAveragePooling3D [as 別名]
def createModel(patchSize, numClasses):

    if K.image_data_format() == 'channels_last':
        bn_axis = -1
    else:
        bn_axis = 1

    growthRate_k = 12
    compressionFactor = 0.5

    input_tensor = Input(shape=(patchSize[0], patchSize[1], patchSize[2], 1))

    # first conv layer
    x = Conv3D(16, (3,3,3), strides=(1,1,1), padding='same', kernel_initializer='he_normal')(input_tensor)

    # 1. Dense Block
    x, numFilters = dense_block_3D(x, numInputFilters=16, numLayers=7, growthRate_k=growthRate_k, bottleneck_enabled=True)

    # Transition Layer
    x, numFilters = transition_SE_layer_3D(x, numFilters, compressionFactor=compressionFactor, se_ratio=8)

    # 2. Dense Block
    x, numFilters = dense_block_3D(x, numInputFilters=numFilters, numLayers=7, growthRate_k=growthRate_k, bottleneck_enabled=True)

    #Transition Layer
    x, numFilters = transition_SE_layer_3D(x, numFilters, compressionFactor=compressionFactor, se_ratio=8)

    #3. Dense Block
    x, numFilters = dense_block_3D(x, numInputFilters=numFilters, numLayers=7, growthRate_k=growthRate_k, bottleneck_enabled=True)

    # SE Block
    x = squeeze_excitation_block_3D(x, ratio=16)

    x = BatchNormalization(axis=bn_axis)(x)
    x = Activation('relu')(x)

    # global average pooling
    x = GlobalAveragePooling3D(data_format='channels_last')(x)

    # fully-connected layer
    output = Dense(units=numClasses,
                   activation='softmax',
                   kernel_initializer='he_normal',
                   name='fully-connected')(x)

    # create model
    cnn = Model(input_tensor, output, name='3D-DenseNet-34')
    sModelName = '3D-DenseNet-34'

    return cnn, sModelName 
開發者ID:thomaskuestner,項目名稱:CNNArt,代碼行數:52,代碼來源:multiclass_3D_SE-DenseNet_BC.py

示例9: fCreateModel_FCN_MultiFM

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import GlobalAveragePooling3D [as 別名]
def fCreateModel_FCN_MultiFM(patchSize, dr_rate=0.0, iPReLU=0,l1_reg=0, l2_reg=1e-6):
    # Total params: 1,420,549
    # The dense layer is repleced by a convolutional layer with filters=2 for the two classes
    # The FM from the third down scaled convolutional layer is upsempled by deconvolution and
    # added with the FM from the second down scaled convolutional layer.
    # The combined FM goes through a convolutional layer with filters=2 for the two classes
    # The two predictions are averages as the final result.
    Strides = fgetStrides()
    kernelnumber = fgetKernelNumber()
    inp = Input(shape=(1, int(patchSize[0]), int(patchSize[1]), int(patchSize[2])))

    after_Conv_1 = fCreateVNet_Block(inp, kernelnumber[0], type=fgetLayerNumConv(), l2_reg=l2_reg)
    after_DownConv_1 = fCreateVNet_DownConv_Block(after_Conv_1, after_Conv_1._keras_shape[1], Strides[0],
                                                     iPReLU=iPReLU, dr_rate=dr_rate, l2_reg=l2_reg)

    after_Conv_2 = fCreateVNet_Block(after_DownConv_1, kernelnumber[1], type=fgetLayerNumConv(), l2_reg=l2_reg)
    after_DownConv_2 = fCreateVNet_DownConv_Block(after_Conv_2, after_Conv_2._keras_shape[1], Strides[1],
                                                   iPReLU=iPReLU, dr_rate=dr_rate, l2_reg=l2_reg)

    after_Conv_3 = fCreateVNet_Block(after_DownConv_2, kernelnumber[2], type=fgetLayerNumConv(), l2_reg=l2_reg)
    after_DownConv_3 = fCreateVNet_DownConv_Block(after_Conv_3, after_Conv_3._keras_shape[1], Strides[2],
                                                   iPReLU=iPReLU, dr_rate=dr_rate, l2_reg=l2_reg)

    # fully convolution over the FM from the deepest level
    dropout_out1 = Dropout(dr_rate)(after_DownConv_3)
    fclayer1 = Conv3D(2,
                       kernel_size=(1,1,1),
                       kernel_initializer='he_normal',
                       weights=None,
                       padding='valid',
                       strides=(1, 1, 1),
                       kernel_regularizer=l1_l2(l1_reg, l2_reg),
                       )(dropout_out1)
    fclayer1 = GlobalAveragePooling3D()(fclayer1)
    
    # Upsample FM from the deepest level, add with FM from level 2, 
    UpedFM_Level3 = Conv3DTranspose(filters=97, kernel_size=(3,3,1), strides=(2,2,1), padding='same')(after_DownConv_3)
    conbined_FM_Level23 = add([UpedFM_Level3, after_DownConv_2])    
    fclayer2 = Conv3D(2,
                       kernel_size=(1,1,1),
                       kernel_initializer='he_normal',
                       weights=None,
                       padding='valid',
                       strides=(1, 1, 1),
                       kernel_regularizer=l1_l2(l1_reg, l2_reg),
                       )(conbined_FM_Level23)
    fclayer2 = GlobalAveragePooling3D()(fclayer2)

    # combine the two predictions using average
    fcl_aver = average([fclayer1, fclayer2])
    predict = Activation('softmax')(fcl_aver)
    cnn_fcl_msfm = Model(inputs=inp, outputs=predict)
    return cnn_fcl_msfm 
開發者ID:thomaskuestner,項目名稱:CNNArt,代碼行數:55,代碼來源:MSnetworks.py

示例10: densenet_3d

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import GlobalAveragePooling3D [as 別名]
def densenet_3d(nb_classes, input_shape, weight_decay=0.005, dropout_rate=0.2):

    model_input = Input(shape=input_shape)

    # 112x112x8
    # stage 1 Initial convolution
    x = conv_factory(model_input, 64)
    x = MaxPool3D((2, 2, 1), strides=(2, 2, 1), padding='same')(x)
    # 56x56x8

    # stage 2
    x = dense_block(x, 32, internal_layers=4,
                             dropout_rate=dropout_rate)
    x = MaxPool3D((2, 2, 2), strides=(2, 2, 2), padding='same')(x)
    x = conv_factory(x, 128, (1, 1, 1), dropout_rate=dropout_rate)
    # 28x28x4

    # stage 3
    x= dense_block(x, 32, internal_layers=4,
                   dropout_rate=dropout_rate)
    x = MaxPool3D((2, 2, 2), strides=(2, 2, 2), padding='same')(x)
    x = conv_factory(x, 128, (1, 1, 1), dropout_rate=dropout_rate)

    # 14x14x2

    # stage 4
    x = dense_block(x, 64, internal_layers=4,
                   dropout_rate=dropout_rate)
    x = MaxPool3D((2, 2, 2), strides=(2, 2, 2), padding='same')(x)
    x = conv_factory(x, 256, (1, 1, 1), dropout_rate=dropout_rate)

    # 7x7x1

    # stage 5
    x = dense_block(x, 64, internal_layers=4,
                   dropout_rate=dropout_rate)

    x = conv_factory(x, 256, (1, 1, 1), dropout_rate=dropout_rate)

    x = GlobalAveragePooling3D()(x)
    x = Dense(nb_classes,
              activation='softmax',
              kernel_regularizer=l2(weight_decay),
              bias_regularizer=l2(weight_decay))(x)

    model = Model(inputs=model_input, outputs=x, name="densenet_3d")

    return model 
開發者ID:TianzhongSong,項目名稱:3D-ConvNets-for-Action-Recognition,代碼行數:50,代碼來源:densenet_3d.py


注:本文中的keras.layers.GlobalAveragePooling3D方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。