當前位置: 首頁>>代碼示例>>Python>>正文


Python layers.GlobalAveragePooling1D方法代碼示例

本文整理匯總了Python中keras.layers.GlobalAveragePooling1D方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.GlobalAveragePooling1D方法的具體用法?Python layers.GlobalAveragePooling1D怎麽用?Python layers.GlobalAveragePooling1D使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.layers的用法示例。


在下文中一共展示了layers.GlobalAveragePooling1D方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: bidLstm_simple

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import GlobalAveragePooling1D [as 別名]
def bidLstm_simple(maxlen, embed_size, recurrent_units, dropout_rate, recurrent_dropout_rate, dense_size, nb_classes):
    #inp = Input(shape=(maxlen, ))
    input_layer = Input(shape=(maxlen, embed_size), )
    #x = Embedding(max_features, embed_size, weights=[embedding_matrix], trainable=False)(inp)
    x = Bidirectional(LSTM(recurrent_units, return_sequences=True, dropout=dropout_rate,
                           recurrent_dropout=dropout_rate))(input_layer)
    x = Dropout(dropout_rate)(x)
    x_a = GlobalMaxPool1D()(x)
    x_b = GlobalAveragePooling1D()(x)
    #x_c = AttentionWeightedAverage()(x)
    #x_a = MaxPooling1D(pool_size=2)(x)
    #x_b = AveragePooling1D(pool_size=2)(x)
    x = concatenate([x_a,x_b])
    x = Dense(dense_size, activation="relu")(x)
    x = Dropout(dropout_rate)(x)
    x = Dense(nb_classes, activation="sigmoid")(x)
    model = Model(inputs=input_layer, outputs=x)
    model.summary()
    model.compile(loss='binary_crossentropy', 
        optimizer='adam', 
        metrics=['accuracy'])
    return model


# bidirectional LSTM with attention layer 
開發者ID:kermitt2,項目名稱:delft,代碼行數:27,代碼來源:models.py

示例2: fasttext_model

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import GlobalAveragePooling1D [as 別名]
def fasttext_model(max_len=300,
                   vocabulary_size=20000,
                   embedding_dim=128,
                   num_classes=4):
    model = Sequential()

    # embed layer by maps vocab index into emb dimensions
    model.add(Embedding(input_dim=vocabulary_size, output_dim=embedding_dim, input_length=max_len))
    # pooling the embedding
    model.add(GlobalAveragePooling1D())
    # output multi classification of num_classes
    model.add(Dense(num_classes, activation='softmax'))

    model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
    model.summary()
    return model 
開發者ID:shibing624,項目名稱:text-classifier,代碼行數:18,代碼來源:deep_model.py

示例3: __init__

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import GlobalAveragePooling1D [as 別名]
def __init__(self, nb_classes, nb_tokens, maxlen,
                 nb_head=8, head_size=16, nb_transformer=2,
                 embedding_dim=256, embeddings=None, embed_l2=1E-6,
                 pos_embed=False, final_dropout_rate=0.15,
                 embed_dropout_rate=0.15):
        self.nb_classes = nb_classes
        self.nb_tokens = nb_tokens
        self.maxlen = maxlen
        self.nb_head = nb_head
        self.head_size = head_size
        self.embedding_dim = embedding_dim
        self.nb_transformer = nb_transformer
        if embeddings is not None:
            self.token_embeddings = [embeddings]
        else:
            self.token_embeddings = None
        self.pos_embed = pos_embed
        self.final_dropout_rate = final_dropout_rate
        self.embed_dropout_rate = embed_dropout_rate
        self.pos_embed_layer = Position_Embedding(name='position_embedding')
        self.transformers = [Self_Attention(
            nb_head, head_size, name='self_attention_%d' % i) for i in range(nb_transformer)]
        self.pool = GlobalAveragePooling1D()
        self.invalid_params = {'pos_embed_layer', 'transformers', 'pool'} 
開發者ID:stevewyl,項目名稱:nlp_toolkit,代碼行數:26,代碼來源:transformer.py

示例4: cnn_spatial_multi

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import GlobalAveragePooling1D [as 別名]
def cnn_spatial_multi(self):
        # spatial stream (frozen)
        cnn_spatial = self.cnn_spatial()
        if self.saved_spatial_weights is None:
            print("[ERROR] No saved_spatial_weights weights file!")
        else:
            cnn_spatial.load_weights(self.saved_spatial_weights)
        for layer in cnn_spatial.layers:
            layer.trainable = False

        # building inputs and output
        model = Sequential()
        model.add(TimeDistributed((cnn_spatial), input_shape=self.input_shape_spatial_multi))
        model.add(GlobalAveragePooling1D())

        return model

    # CNN model for the temporal stream with multiple inputs 
開發者ID:wushidonguc,項目名稱:two-stream-action-recognition-keras,代碼行數:20,代碼來源:fuse_validate_model.py

示例5: cnn_temporal_multi

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import GlobalAveragePooling1D [as 別名]
def cnn_temporal_multi(self):
        # spatial stream (frozen)
        cnn_temporal = self.cnn_temporal()
        if self.saved_temporal_weights is None:
            print("[ERROR] No saved_temporal_weights weights file!")
        else:
            cnn_temporal.load_weights(self.saved_temporal_weights)
        for layer in cnn_temporal.layers:
            layer.trainable = False

        # building inputs and output
        model = Sequential()
        model.add(TimeDistributed((cnn_temporal), input_shape=self.input_shape_temporal_multi))
        model.add(GlobalAveragePooling1D())

        return model

    # CNN model for the spatial stream 
開發者ID:wushidonguc,項目名稱:two-stream-action-recognition-keras,代碼行數:20,代碼來源:fuse_validate_model.py

示例6: create_model

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import GlobalAveragePooling1D [as 別名]
def create_model(self, hyper_parameters):
        """
            構建神經網絡
        :param hyper_parameters:json,  hyper parameters of network
        :return: tensor, moedl
        """
        super().create_model(hyper_parameters)
        embedding = self.word_embedding.output

        def win_mean(x):
            res_list = []
            for i in range(self.len_max-self.n_win+1):
                x_mean = tf.reduce_mean(x[:, i:i + self.n_win, :], axis=1)
                x_mean_dims = tf.expand_dims(x_mean, axis=-1)
                res_list.append(x_mean_dims)
            res_list = tf.concat(res_list, axis=-1)
            gg = tf.reduce_max(res_list, axis=-1)
            return gg

        if self.encode_type=="HIERARCHICAL":
            x = Lambda(win_mean, output_shape=(self.embed_size, ))(embedding)
        elif self.encode_type=="MAX":
            x = GlobalMaxPooling1D()(embedding)
        elif self.encode_type=="AVG":
            x = GlobalAveragePooling1D()(embedding)
        elif self.encode_type == "CONCAT":
            x_max = GlobalMaxPooling1D()(embedding)
            x_avg = GlobalAveragePooling1D()(embedding)
            x = Concatenate()([x_max, x_avg])
        else:
            raise RuntimeError("encode_type must be 'MAX', 'AVG', 'CONCAT', 'HIERARCHICAL'")

        output = Dense(self.label, activation=self.activate_classify)(x)
        self.model = Model(inputs=self.word_embedding.input, outputs=output)
        self.model.summary(132) 
開發者ID:yongzhuo,項目名稱:Keras-TextClassification,代碼行數:37,代碼來源:graph.py

示例7: lstm

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import GlobalAveragePooling1D [as 別名]
def lstm(maxlen, embed_size, recurrent_units, dropout_rate, recurrent_dropout_rate, dense_size, nb_classes):
    #inp = Input(shape=(maxlen, ))
    input_layer = Input(shape=(maxlen, embed_size), )
    #x = Embedding(max_features, embed_size, weights=[embedding_matrix],
    #              trainable=False)(inp)
    x = LSTM(recurrent_units, return_sequences=True, dropout=dropout_rate,
                           recurrent_dropout=dropout_rate)(input_layer)
    #x = CuDNNLSTM(recurrent_units, return_sequences=True)(x)
    x = Dropout(dropout_rate)(x)
    x_a = GlobalMaxPool1D()(x)
    x_b = GlobalAveragePooling1D()(x)
    #x_c = AttentionWeightedAverage()(x)
    #x_a = MaxPooling1D(pool_size=2)(x)
    #x_b = AveragePooling1D(pool_size=2)(x)
    x = concatenate([x_a,x_b])
    x = Dense(dense_size, activation="relu")(x)
    x = Dropout(dropout_rate)(x)
    x = Dense(nb_classes, activation="sigmoid")(x)
    model = Model(inputs=input_layer, outputs=x)
    model.summary()
    model.compile(loss='binary_crossentropy', 
                optimizer='adam', 
                metrics=['accuracy'])
    return model


# bidirectional LSTM 
開發者ID:kermitt2,項目名稱:delft,代碼行數:29,代碼來源:models.py

示例8: cnn3

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import GlobalAveragePooling1D [as 別名]
def cnn3(maxlen, embed_size, recurrent_units, dropout_rate, recurrent_dropout_rate, dense_size, nb_classes):
    #inp = Input(shape=(maxlen, ))
    input_layer = Input(shape=(maxlen, embed_size), )
    #x = Embedding(max_features, embed_size, weights=[embedding_matrix], trainable=False)(inp)
    x = GRU(recurrent_units, return_sequences=True, dropout=dropout_rate,
                           recurrent_dropout=dropout_rate)(input_layer)
    #x = Dropout(dropout_rate)(x) 

    x = Conv1D(filters=recurrent_units, kernel_size=2, padding='same', activation='relu')(x)
    x = MaxPooling1D(pool_size=2)(x)
    x = Conv1D(filters=recurrent_units, kernel_size=2, padding='same', activation='relu')(x)
    x = MaxPooling1D(pool_size=2)(x)
    x = Conv1D(filters=recurrent_units, kernel_size=2, padding='same', activation='relu')(x)
    x = MaxPooling1D(pool_size=2)(x)
    x_a = GlobalMaxPool1D()(x)
    x_b = GlobalAveragePooling1D()(x)
    #x_c = AttentionWeightedAverage()(x)
    #x_a = MaxPooling1D(pool_size=2)(x)
    #x_b = AveragePooling1D(pool_size=2)(x)
    x = concatenate([x_a,x_b])
    #x = Dropout(dropout_rate)(x)
    x = Dense(dense_size, activation="relu")(x)
    x = Dense(nb_classes, activation="sigmoid")(x)
    model = Model(inputs=input_layer, outputs=x)
    model.summary()  
    model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
    return model 
開發者ID:kermitt2,項目名稱:delft,代碼行數:29,代碼來源:models.py

示例9: gru

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import GlobalAveragePooling1D [as 別名]
def gru(maxlen, embed_size, recurrent_units, dropout_rate, recurrent_dropout_rate, dense_size, nb_classes):
    #input_layer = Input(shape=(maxlen,))
    input_layer = Input(shape=(maxlen, embed_size), )
    #embedding_layer = Embedding(max_features, embed_size, 
    #                            weights=[embedding_matrix], trainable=False)(input_layer)
    x = Bidirectional(GRU(recurrent_units, return_sequences=True, dropout=dropout_rate,
                           recurrent_dropout=recurrent_dropout_rate))(input_layer)
    x = Dropout(dropout_rate)(x)
    x = Bidirectional(GRU(recurrent_units, return_sequences=True, dropout=dropout_rate,
                           recurrent_dropout=recurrent_dropout_rate))(x)
    #x = AttentionWeightedAverage(maxlen)(x)
    x_a = GlobalMaxPool1D()(x)
    x_b = GlobalAveragePooling1D()(x)
    #x_c = AttentionWeightedAverage()(x)
    #x_a = MaxPooling1D(pool_size=2)(x)
    #x_b = AveragePooling1D(pool_size=2)(x)
    x = concatenate([x_a,x_b], axis=1)
    #x = Dense(dense_size, activation="relu")(x)
    #x = Dropout(dropout_rate)(x)
    x = Dense(dense_size, activation="relu")(x)
    output_layer = Dense(nb_classes, activation="sigmoid")(x)

    model = Model(inputs=input_layer, outputs=output_layer)
    model.summary()
    model.compile(loss='binary_crossentropy',
                  optimizer=RMSprop(clipvalue=1, clipnorm=1),
                  #optimizer='adam',
                  metrics=['accuracy'])
    return model 
開發者ID:kermitt2,項目名稱:delft,代碼行數:31,代碼來源:models.py

示例10: gru_simple

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import GlobalAveragePooling1D [as 別名]
def gru_simple(maxlen, embed_size, recurrent_units, dropout_rate, recurrent_dropout_rate, dense_size, nb_classes):
    #input_layer = Input(shape=(maxlen,))
    input_layer = Input(shape=(maxlen, embed_size), )
    #embedding_layer = Embedding(max_features, embed_size,
    #                            weights=[embedding_matrix], trainable=False)(input_layer)
    x = Bidirectional(GRU(recurrent_units, return_sequences=True, dropout=dropout_rate,
                           recurrent_dropout=dropout_rate))(input_layer)
    #x = AttentionWeightedAverage(maxlen)(x)
    x_a = GlobalMaxPool1D()(x)
    x_b = GlobalAveragePooling1D()(x)
    #x_c = AttentionWeightedAverage()(x)
    #x_a = MaxPooling1D(pool_size=2)(x)
    #x_b = AveragePooling1D(pool_size=2)(x)
    x = concatenate([x_a,x_b], axis=1)
    #x = Dense(dense_size, activation="relu")(x)
    #x = Dropout(dropout_rate)(x)
    x = Dense(dense_size, activation="relu")(x)
    output_layer = Dense(nb_classes, activation="sigmoid")(x)

    model = Model(inputs=input_layer, outputs=output_layer)
    model.summary()
    model.compile(loss='binary_crossentropy',
                  optimizer=RMSprop(clipvalue=1, clipnorm=1),
                  #optimizer='adam',
                  metrics=['accuracy'])
    return model


# bid GRU + bid LSTM 
開發者ID:kermitt2,項目名稱:delft,代碼行數:31,代碼來源:models.py

示例11: mix1

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import GlobalAveragePooling1D [as 別名]
def mix1(maxlen, embed_size, recurrent_units, dropout_rate, recurrent_dropout_rate, dense_size, nb_classes):
    #input_layer = Input(shape=(maxlen,))
    input_layer = Input(shape=(maxlen, embed_size), )
    #embedding_layer = Embedding(max_features, embed_size,
    #                            weights=[embedding_matrix], trainable=False)(input_layer)
    x = Bidirectional(GRU(recurrent_units, return_sequences=True, dropout=dropout_rate,
                           recurrent_dropout=recurrent_dropout_rate))(input_layer)
    x = Dropout(dropout_rate)(x)
    x = Bidirectional(LSTM(recurrent_units, return_sequences=True, dropout=dropout_rate,
                           recurrent_dropout=recurrent_dropout_rate))(x)

    x_a = GlobalMaxPool1D()(x)
    x_b = GlobalAveragePooling1D()(x)
    x = concatenate([x_a,x_b])

    x = Dense(dense_size, activation="relu")(x)
    output_layer = Dense(nb_classes, activation="sigmoid")(x)

    model = Model(inputs=input_layer, outputs=output_layer)
    model.summary()
    model.compile(loss='binary_crossentropy',
                  optimizer=RMSprop(clipvalue=1, clipnorm=1),
                  #optimizer='adam',
                  metrics=['accuracy'])
    return model


# DPCNN 
開發者ID:kermitt2,項目名稱:delft,代碼行數:30,代碼來源:models.py

示例12: build_model_avt_cnn

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import GlobalAveragePooling1D [as 別名]
def build_model_avt_cnn(self):
        #########text-cnn#########
        # bert embedding
        bert_inputs, bert_output = KerasBertEmbedding().bert_encode()
        # text cnn
        bert_output_emmbed = SpatialDropout1D(rate=self.keep_prob)(bert_output)
        concat_x = []
        concat_y = []
        concat_z = []
        for index, filter_size in enumerate(self.filters):
            conv = Conv1D(name='TextCNN_Conv1D_{}'.format(index), filters=int(self.embedding_dim/2), kernel_size=self.filters[index], padding='valid', kernel_initializer='normal', activation='relu')(bert_output_emmbed)
            x = GlobalMaxPooling1D(name='TextCNN_MaxPooling1D_{}'.format(index))(conv)
            y = GlobalAveragePooling1D(name='TextCNN_AveragePooling1D_{}'.format(index))(conv)
            z = AttentionWeightedAverage(name='TextCNN_Annention_{}'.format(index))(conv)
            concat_x.append(x)
            concat_y.append(y)
            concat_z.append(z)

        merge_x = Concatenate(axis=1)(concat_x)
        merge_y = Concatenate(axis=1)(concat_y)
        merge_z = Concatenate(axis=1)(concat_z)
        merge_xyz = Concatenate(axis=1)([merge_x, merge_y, merge_z])
        x = Dropout(self.keep_prob)(merge_xyz)

        # 最後就是softmax
        dense_layer = Dense(self.label, activation=self.activation)(x)
        output_layers = [dense_layer]
        self.model = Model(bert_inputs, output_layers) 
開發者ID:yongzhuo,項目名稱:nlp_xiaojiang,代碼行數:30,代碼來源:keras_bert_classify_text_cnn.py

示例13: Archi_3CONV64C_1FC256_GAP_f3fd

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import GlobalAveragePooling1D [as 別名]
def Archi_3CONV64C_1FC256_GAP_f3fd(X, nbclasses):
	
	#-- get the input sizes
	m, L, depth = X.shape
	input_shape = (L,depth)
	
	#-- parameters of the architecture
	l2_rate = 1.e-6
	dropout_rate = 0.5
	nb_conv = 3
	nb_fc= 1
	nbunits_conv = 640 #-- will be double
	nbunits_fc = 256 #-- will be double
	
	# Define the input placeholder.
	X_input = Input(input_shape)
		
	#-- nb_conv CONV layers
	X = X_input
	for add in range(nb_conv):
		X = conv_bn_relu_drop(X, nbunits=nbunits_conv, kernel_size=3, kernel_regularizer=l2(l2_rate), dropout_rate=dropout_rate)
	#-- Flatten + 	1 FC layers
	X = GlobalAveragePooling1D()(X)
	for add in range(nb_fc):	
		X = fc_bn_relu_drop(X, nbunits=nbunits_fc, kernel_regularizer=l2(l2_rate), dropout_rate=dropout_rate)
		
	#-- SOFTMAX layer
	out = softmax(X, nbclasses, kernel_regularizer=l2(l2_rate))
		
	# Create model.
	return Model(inputs = X_input, outputs = out, name='Archi_3CONV64C_1FC256_GAP_f3fd')	


#----------------------------------------------------------------------- 
開發者ID:charlotte-pel,項目名稱:temporalCNN,代碼行數:36,代碼來源:architecture_pooling.py

示例14: Archi_3CONV64C_1FC256_GAP_f5fd

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import GlobalAveragePooling1D [as 別名]
def Archi_3CONV64C_1FC256_GAP_f5fd(X, nbclasses):
	
	#-- get the input sizes
	m, L, depth = X.shape
	input_shape = (L,depth)
	
	#-- parameters of the architecture
	l2_rate = 1.e-6
	dropout_rate = 0.5
	nb_conv = 3
	nb_fc= 1
	nbunits_conv = 512 #-- will be double
	nbunits_fc = 256 #-- will be double
	
	# Define the input placeholder.
	X_input = Input(input_shape)
		
	#-- nb_conv CONV layers
	X = X_input
	for add in range(nb_conv):
		X = conv_bn_relu_drop(X, nbunits=nbunits_conv, kernel_size=5, kernel_regularizer=l2(l2_rate), dropout_rate=dropout_rate)
	#-- Flatten + 	1 FC layers
	X = GlobalAveragePooling1D()(X)
	for add in range(nb_fc):	
		X = fc_bn_relu_drop(X, nbunits=nbunits_fc, kernel_regularizer=l2(l2_rate), dropout_rate=dropout_rate)
		
	#-- SOFTMAX layer
	out = softmax(X, nbclasses, kernel_regularizer=l2(l2_rate))
		
	# Create model.
	return Model(inputs = X_input, outputs = out, name='Archi_3CONV64C_1FC256_GAP_f5fd')	


#----------------------------------------------------------------------- 
開發者ID:charlotte-pel,項目名稱:temporalCNN,代碼行數:36,代碼來源:architecture_pooling.py

示例15: Archi_3CONV64C_1FC256_GAP_f9fd

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import GlobalAveragePooling1D [as 別名]
def Archi_3CONV64C_1FC256_GAP_f9fd(X, nbclasses):
	
	#-- get the input sizes
	m, L, depth = X.shape
	input_shape = (L,depth)
	
	#-- parameters of the architecture
	l2_rate = 1.e-6
	dropout_rate = 0.5
	nb_conv = 3
	nb_fc= 1
	nbunits_conv = 384 #-- will be double
	nbunits_fc = 256 #-- will be double
	
	# Define the input placeholder.
	X_input = Input(input_shape)
		
	#-- nb_conv CONV layers
	X = X_input
	for add in range(nb_conv):
		X = conv_bn_relu_drop(X, nbunits=nbunits_conv, kernel_size=9, kernel_regularizer=l2(l2_rate), dropout_rate=dropout_rate)
	#-- Flatten + 	1 FC layers
	X = GlobalAveragePooling1D()(X)
	for add in range(nb_fc):	
		X = fc_bn_relu_drop(X, nbunits=nbunits_fc, kernel_regularizer=l2(l2_rate), dropout_rate=dropout_rate)
		
	#-- SOFTMAX layer
	out = softmax(X, nbclasses, kernel_regularizer=l2(l2_rate))
		
	# Create model.
	return Model(inputs = X_input, outputs = out, name='Archi_3CONV64C_1FC256_GAP_f9fd')	

#----------------------------------------------------------------------- 
開發者ID:charlotte-pel,項目名稱:temporalCNN,代碼行數:35,代碼來源:architecture_pooling.py


注:本文中的keras.layers.GlobalAveragePooling1D方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。