當前位置: 首頁>>代碼示例>>Python>>正文


Python layers.GaussianNoise方法代碼示例

本文整理匯總了Python中keras.layers.GaussianNoise方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.GaussianNoise方法的具體用法?Python layers.GaussianNoise怎麽用?Python layers.GaussianNoise使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.layers的用法示例。


在下文中一共展示了layers.GaussianNoise方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: discriminator_network

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import GaussianNoise [as 別名]
def discriminator_network(x):
    def add_common_layers(y):
        y = layers.advanced_activations.LeakyReLU()(y)
        y = layers.Dropout(0.25)(y)
        return y

    x = layers.GaussianNoise(stddev=0.2)(x)

    x = layers.Conv2D(64, kernel_size, **conv_layer_keyword_args)(x)
    x = add_common_layers(x)

    x = layers.Conv2D(128, kernel_size, **conv_layer_keyword_args)(x)
    x = add_common_layers(x)

    x = layers.Flatten()(x)

    x = layers.Dense(1024)(x)
    x = add_common_layers(x)

    return layers.Dense(1, activation='sigmoid')(x) 
開發者ID:mjdietzx,項目名稱:GAN-Sandbox,代碼行數:22,代碼來源:gan.py

示例2: create_network

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import GaussianNoise [as 別名]
def create_network(nb_features, nb_labels, padding_value):

    # Define the network architecture
    input_data = Input(name='input', shape=(None, nb_features)) # nb_features = image height

    masking = Masking(mask_value=padding_value)(input_data)
    noise = GaussianNoise(0.01)(masking)
    blstm = Bidirectional(LSTM(128, return_sequences=True, dropout=0.1))(noise)
    blstm = Bidirectional(LSTM(128, return_sequences=True, dropout=0.1))(blstm)
    blstm = Bidirectional(LSTM(128, return_sequences=True, dropout=0.1))(blstm)

    dense = TimeDistributed(Dense(nb_labels + 1, name="dense"))(blstm)
    outrnn = Activation('softmax', name='softmax')(dense)

    network = CTCModel([input_data], [outrnn])
    network.compile(Adam(lr=0.0001))

    return network 
開發者ID:ysoullard,項目名稱:CTCModel,代碼行數:20,代碼來源:example.py

示例3: graves2006

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import GaussianNoise [as 別名]
def graves2006(num_features=26, num_hiddens=100, num_classes=28, std=.6):
    """ Implementation of Graves' model
    Reference:
        [1] Graves, Alex, et al. "Connectionist temporal classification:
        labelling unsegmented sequence data with recurrent neural networks."
        Proceedings of the 23rd international conference on Machine learning.
        ACM, 2006.
    """

    x = Input(name='inputs', shape=(None, num_features))
    o = x

    o = GaussianNoise(std)(o)
    o = Bidirectional(LSTM(num_hiddens,
                      return_sequences=True,
                      consume_less='gpu'))(o)
    o = TimeDistributed(Dense(num_classes))(o)

    return ctc_model(x, o) 
開發者ID:igormq,項目名稱:asr-study,代碼行數:21,代碼來源:models.py

示例4: CNN

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import GaussianNoise [as 別名]
def CNN(input_shape=None, classes=1000):
    inputs = Input(shape=input_shape)

    # Block 1
    x = GaussianNoise(0.3)(inputs)
    x = CBRD(x, 64)
    x = CBRD(x, 64)
    x = MaxPooling2D()(x)

    # Block 2
    x = CBRD(x, 128)
    x = CBRD(x, 128)
    x = MaxPooling2D()(x)

    # Block 3
    x = CBRD(x, 256)
    x = CBRD(x, 256)
    x = CBRD(x, 256)
    x = MaxPooling2D()(x)

    # Classification block
    x = Flatten(name='flatten')(x)
    x = DBRD(x, 4096)
    x = DBRD(x, 4096)
    x = Dense(classes, activation='softmax', name='predictions')(x)

    model = Model(inputs=inputs, outputs=x)

    return model 
開發者ID:OsciiArt,項目名稱:DeepAA,代碼行數:31,代碼來源:train.py

示例5: graves

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import GaussianNoise [as 別名]
def graves(input_dim=26, rnn_size=512, output_dim=29, std=0.6):
    """ Implementation of Graves 2006 model

    Architecture:
        Gaussian Noise on input
        BiDirectional LSTM

    Reference:
        ftp://ftp.idsia.ch/pub/juergen/icml2006.pdf
    """

    K.set_learning_phase(1)
    input_data = Input(name='the_input', shape=(None, input_dim))
    # x = BatchNormalization(axis=-1)(input_data)

    x = GaussianNoise(std)(input_data)
    x = Bidirectional(LSTM(rnn_size,
                      return_sequences=True,
                      implementation=0))(x)
    y_pred = TimeDistributed(Dense(output_dim, activation='softmax'))(x)

    # Input of labels and other CTC requirements
    labels = Input(name='the_labels', shape=[None,], dtype='int32')
    input_length = Input(name='input_length', shape=[1], dtype='int32')
    label_length = Input(name='label_length', shape=[1], dtype='int32')

    # Keras doesn't currently support loss funcs with extra parameters
    # so CTC loss is implemented in a lambda layer
    loss_out = Lambda(ctc_lambda_func, output_shape=(1,), name='ctc')([y_pred,
                                                                       labels,
                                                                       input_length,
                                                                       label_length])


    model = Model(inputs=[input_data, labels, input_length, label_length], outputs=[loss_out])

    return model 
開發者ID:robmsmt,項目名稱:KerasDeepSpeech,代碼行數:39,代碼來源:model.py

示例6: supervised_train

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import GaussianNoise [as 別名]
def supervised_train(task_name,sed_model_name,augmentation):
	""""
	Training with only weakly-supervised learning
	Args:
		task_name: string
			the name of the task
		sed_model_name:	string
			the name of the model
		augmentation:	bool
			whether to add Gaussian noise Layer
	Return:

	"""
	LOG.info('config preparation for %s'%sed_model_name)
	#prepare for training
	train_sed=trainer.trainer(task_name,sed_model_name,False)
	
	#creat model using the model structure prepared in [train_sed]
	creat_model_sed=train_sed.model_struct.graph()
	LEN=train_sed.data_loader.LEN
	DIM=train_sed.data_loader.DIM
	inputs=Input((LEN,DIM))

	#add Gaussian noise Layer
	if augmentation:
		inputs_t=GaussianNoise(0.15)(inputs)
	else:
		inputs_t=inputs
	outs=creat_model_sed(inputs_t,False)

	#the model used for training
	models=Model(inputs,outs)

	LOG.info('------------start training------------')
	train_sed.train(extra_model=models,train_mode='supervised')

	#predict results for validation set and test set
	train_sed.save_at_result()	#audio tagging result
	train_sed.save_sed_result()	#event detection result 
開發者ID:Kikyo-16,項目名稱:Sound_event_detection,代碼行數:41,代碼來源:main.py

示例7: modelSharedEncoder

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import GaussianNoise [as 別名]
def modelSharedEncoder(self, name):
        input = Input(shape=self.latent_dim)

        x = self.resblk(input, 256)
        z = GaussianNoise(stddev=1)(x, training=True)

        return Model(inputs=input, outputs=z, name=name) 
開發者ID:simontomaskarlsson,項目名稱:GAN-MRI,代碼行數:9,代碼來源:UNIT.py

示例8: _build_model

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import GaussianNoise [as 別名]
def _build_model(self, nfeatures, architecture, supervised, confusion, confusion_incr, confusion_max, 
        activations, noise, droprate, coral_layer_idx, optimizer):

        self.inp_a = tf.placeholder(tf.float32, shape=(None, nfeatures))
        self.inp_b = tf.placeholder(tf.float32, shape=(None, nfeatures))
        self.labels_a = tf.placeholder(tf.float32, shape=(None, 1))
        self.lr = tf.placeholder(tf.float32, [], name='lr')

        nlayers = len(architecture)
        layers_a = [self.inp_a]
        layers_b = [self.inp_b]

        for i, nunits in enumerate(architecture):

            print nunits,
            if i in coral_layer_idx: print '(CORAL)'
            else: print

            if isinstance(nunits, int):
                shared_layer = Dense(nunits, activation='linear')
            elif nunits == 'noise':
                shared_layer = GaussianNoise(noise)
            elif nunits == 'bn':
                shared_layer = BatchNormalization()
            elif nunits == 'drop':
                shared_layer = Dropout(droprate)
            elif nunits == 'act':
                if activations == 'prelu':
                    shared_layer = PReLU()
                elif activations == 'elu':
                    shared_layer = ELU()
                elif activations == 'leakyrelu':
                    shared_layer = LeakyReLU()
                else:
                    shared_layer = Activation(activations)

            layers_a += [shared_layer(layers_a[-1])]
            layers_b += [shared_layer(layers_b[-1])] 
開發者ID:erlendd,項目名稱:ddan,代碼行數:40,代碼來源:deepcoral.py

示例9: _build

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import GaussianNoise [as 別名]
def _build(self, input_layer, arch, activations, noise, droprate, l2reg):
        print 'Building network layers...'
        network = [input_layer]
        for nunits in arch:
            print nunits
            if isinstance(nunits, int):
                network += [Dense(nunits, activation='linear', kernel_regularizer=l1_l2(l1=0.01, l2=l2reg))(network[-1])]

            elif nunits == 'noise':
                network += [GaussianNoise(noise)(network[-1])]

            elif nunits == 'bn':
                network += [BatchNormalization()(network[-1])]

            elif nunits == 'drop':
                network += [Dropout(droprate)(network[-1])]

            elif nunits == 'act':
                if activations == 'prelu':
                    network += [PReLU()(network[-1])]
                elif activations == 'leakyrelu':
                	network += [LeakyReLU()(network[-1])]
                elif activations == 'elu':
                	network += [ELU()(network[-1])]
                else:
                    print 'Activation({})'.format(activations)
                    network += [Activation(activations)(network[-1])]
        return network 
開發者ID:erlendd,項目名稱:ddan,代碼行數:30,代碼來源:dann.py

示例10: _build_model

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import GaussianNoise [as 別名]
def _build_model(self, nfeatures, architecture, supervised, confusion, confusion_incr, confusion_max, 
        activations, noise, droprate, mmd_layer_idx, optimizer):

        self.inp_a = tf.placeholder(tf.float32, shape=(None, nfeatures))
        self.inp_b = tf.placeholder(tf.float32, shape=(None, nfeatures))
        self.labels_a = tf.placeholder(tf.float32, shape=(None, 1))

        nlayers = len(architecture)
        layers_a = [self.inp_a]
        layers_b = [self.inp_b]

        for i, nunits in enumerate(architecture):

            print nunits,
            if i in mmd_layer_idx: print '(MMD)'
            else: print

            if isinstance(nunits, int):
                shared_layer = Dense(nunits, activation='linear')
            elif nunits == 'noise':
                shared_layer = GaussianNoise(noise)
            elif nunits == 'bn':
                shared_layer = BatchNormalization()
            elif nunits == 'drop':
                shared_layer = Dropout(droprate)
            elif nunits == 'act':
                if activations == 'prelu':
                    shared_layer = PReLU()
                elif activations == 'elu':
                    shared_layer = ELU()
                elif activations == 'leakyrelu':
                    shared_layer = LeakyReLU()
                else:
                    shared_layer = Activation(activations)

            layers_a += [shared_layer(layers_a[-1])]
            layers_b += [shared_layer(layers_b[-1])] 
開發者ID:erlendd,項目名稱:ddan,代碼行數:39,代碼來源:ddcn.py

示例11: gaussian_noise

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import GaussianNoise [as 別名]
def gaussian_noise(layer, layer_in, layerId, tensor=True):
    stddev = layer['params']['stddev']
    out = {layerId: GaussianNoise(stddev=stddev)}
    if tensor:
        out[layerId] = out[layerId](*layer_in)
    return out 
開發者ID:Cloud-CV,項目名稱:Fabrik,代碼行數:8,代碼來源:layers_export.py

示例12: test_keras_import

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import GaussianNoise [as 別名]
def test_keras_import(self):
        model = Sequential()
        model.add(GaussianNoise(stddev=0.1, input_shape=(16, 1)))
        model.build()
        self.keras_param_test(model, 0, 1) 
開發者ID:Cloud-CV,項目名稱:Fabrik,代碼行數:7,代碼來源:test_views.py

示例13: test_keras_export

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import GaussianNoise [as 別名]
def test_keras_export(self):
        tests = open(os.path.join(settings.BASE_DIR, 'tests', 'unit', 'keras_app',
                                  'keras_export_test.json'), 'r')
        response = json.load(tests)
        tests.close()
        net = yaml.safe_load(json.dumps(response['net']))
        net = {'l0': net['Input'], 'l1': net['GaussianNoise']}
        net['l0']['connection']['output'].append('l1')
        inp = data(net['l0'], '', 'l0')['l0']
        net = gaussian_noise(net['l1'], [inp], 'l1')
        model = Model(inp, net['l1'])
        self.assertEqual(model.layers[1].__class__.__name__, 'GaussianNoise') 
開發者ID:Cloud-CV,項目名稱:Fabrik,代碼行數:14,代碼來源:test_views.py

示例14: semi_train

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import GaussianNoise [as 別名]
def semi_train(task_name,sed_model_name,at_model_name,augmentation):
	""""
	Training with semi-supervised learning (Guiding learning)
	Args:
		task_name: string
			the name of the task
                sed_model_name: string
			the name of the the PS-model
		at_model_name: string
			the name of the the PT-model
                augmentation: bool
			whether to add Gaussian noise to the input of the PT-model
	Return:

        """
	#prepare for training of the PS-model
	LOG.info('config preparation for %s'%at_model_name)
	train_sed=trainer.trainer(task_name,sed_model_name,False)

	#prepare for training of the PT-model
	LOG.info('config preparation for %s'%sed_model_name)
	train_at=trainer.trainer(task_name,at_model_name,False)

	#connect the outputs of the two models to produce a model for end-to-end learning
	creat_model_at=train_at.model_struct.graph()
	creat_model_sed=train_sed.model_struct.graph()
	LEN=train_sed.data_loader.LEN
	DIM=train_sed.data_loader.DIM	
	inputs=Input((LEN,DIM))

	#add Gaussian noise
	if augmentation:
		at_inputs=GaussianNoise(0.15)(inputs)
	else:
		at_inputs=inputs

	at_out=creat_model_at(at_inputs,False)
	sed_out=creat_model_sed(inputs,False)
	out=concatenate([at_out,sed_out],axis=-1)
	models=Model(inputs,out)

	#start training (all intermediate files are saved in the PS-model dir)
	LOG.info('------------start training------------')	
	train_sed.train(models)

	#copy the final model to the PT-model dir from the PS-model dir
	shutil.copyfile(train_sed.best_model_path,train_at.best_model_path) 

	#predict results for validation set and test set (the PT-model)
	LOG.info('------------result of %s------------'%at_model_name)
	train_at.save_at_result()	#audio tagging result

	#predict results for validation set and test set (the PS-model)
	LOG.info('------------result of %s------------'%sed_model_name)
	train_sed.save_at_result()	#audio tagging result
	train_sed.save_sed_result()	#event detection result 
開發者ID:Kikyo-16,項目名稱:Sound_event_detection,代碼行數:58,代碼來源:main.py


注:本文中的keras.layers.GaussianNoise方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。