本文整理匯總了Python中keras.layers.GaussianNoise方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.GaussianNoise方法的具體用法?Python layers.GaussianNoise怎麽用?Python layers.GaussianNoise使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類keras.layers
的用法示例。
在下文中一共展示了layers.GaussianNoise方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: discriminator_network
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import GaussianNoise [as 別名]
def discriminator_network(x):
def add_common_layers(y):
y = layers.advanced_activations.LeakyReLU()(y)
y = layers.Dropout(0.25)(y)
return y
x = layers.GaussianNoise(stddev=0.2)(x)
x = layers.Conv2D(64, kernel_size, **conv_layer_keyword_args)(x)
x = add_common_layers(x)
x = layers.Conv2D(128, kernel_size, **conv_layer_keyword_args)(x)
x = add_common_layers(x)
x = layers.Flatten()(x)
x = layers.Dense(1024)(x)
x = add_common_layers(x)
return layers.Dense(1, activation='sigmoid')(x)
示例2: create_network
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import GaussianNoise [as 別名]
def create_network(nb_features, nb_labels, padding_value):
# Define the network architecture
input_data = Input(name='input', shape=(None, nb_features)) # nb_features = image height
masking = Masking(mask_value=padding_value)(input_data)
noise = GaussianNoise(0.01)(masking)
blstm = Bidirectional(LSTM(128, return_sequences=True, dropout=0.1))(noise)
blstm = Bidirectional(LSTM(128, return_sequences=True, dropout=0.1))(blstm)
blstm = Bidirectional(LSTM(128, return_sequences=True, dropout=0.1))(blstm)
dense = TimeDistributed(Dense(nb_labels + 1, name="dense"))(blstm)
outrnn = Activation('softmax', name='softmax')(dense)
network = CTCModel([input_data], [outrnn])
network.compile(Adam(lr=0.0001))
return network
示例3: graves2006
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import GaussianNoise [as 別名]
def graves2006(num_features=26, num_hiddens=100, num_classes=28, std=.6):
""" Implementation of Graves' model
Reference:
[1] Graves, Alex, et al. "Connectionist temporal classification:
labelling unsegmented sequence data with recurrent neural networks."
Proceedings of the 23rd international conference on Machine learning.
ACM, 2006.
"""
x = Input(name='inputs', shape=(None, num_features))
o = x
o = GaussianNoise(std)(o)
o = Bidirectional(LSTM(num_hiddens,
return_sequences=True,
consume_less='gpu'))(o)
o = TimeDistributed(Dense(num_classes))(o)
return ctc_model(x, o)
示例4: CNN
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import GaussianNoise [as 別名]
def CNN(input_shape=None, classes=1000):
inputs = Input(shape=input_shape)
# Block 1
x = GaussianNoise(0.3)(inputs)
x = CBRD(x, 64)
x = CBRD(x, 64)
x = MaxPooling2D()(x)
# Block 2
x = CBRD(x, 128)
x = CBRD(x, 128)
x = MaxPooling2D()(x)
# Block 3
x = CBRD(x, 256)
x = CBRD(x, 256)
x = CBRD(x, 256)
x = MaxPooling2D()(x)
# Classification block
x = Flatten(name='flatten')(x)
x = DBRD(x, 4096)
x = DBRD(x, 4096)
x = Dense(classes, activation='softmax', name='predictions')(x)
model = Model(inputs=inputs, outputs=x)
return model
示例5: graves
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import GaussianNoise [as 別名]
def graves(input_dim=26, rnn_size=512, output_dim=29, std=0.6):
""" Implementation of Graves 2006 model
Architecture:
Gaussian Noise on input
BiDirectional LSTM
Reference:
ftp://ftp.idsia.ch/pub/juergen/icml2006.pdf
"""
K.set_learning_phase(1)
input_data = Input(name='the_input', shape=(None, input_dim))
# x = BatchNormalization(axis=-1)(input_data)
x = GaussianNoise(std)(input_data)
x = Bidirectional(LSTM(rnn_size,
return_sequences=True,
implementation=0))(x)
y_pred = TimeDistributed(Dense(output_dim, activation='softmax'))(x)
# Input of labels and other CTC requirements
labels = Input(name='the_labels', shape=[None,], dtype='int32')
input_length = Input(name='input_length', shape=[1], dtype='int32')
label_length = Input(name='label_length', shape=[1], dtype='int32')
# Keras doesn't currently support loss funcs with extra parameters
# so CTC loss is implemented in a lambda layer
loss_out = Lambda(ctc_lambda_func, output_shape=(1,), name='ctc')([y_pred,
labels,
input_length,
label_length])
model = Model(inputs=[input_data, labels, input_length, label_length], outputs=[loss_out])
return model
示例6: supervised_train
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import GaussianNoise [as 別名]
def supervised_train(task_name,sed_model_name,augmentation):
""""
Training with only weakly-supervised learning
Args:
task_name: string
the name of the task
sed_model_name: string
the name of the model
augmentation: bool
whether to add Gaussian noise Layer
Return:
"""
LOG.info('config preparation for %s'%sed_model_name)
#prepare for training
train_sed=trainer.trainer(task_name,sed_model_name,False)
#creat model using the model structure prepared in [train_sed]
creat_model_sed=train_sed.model_struct.graph()
LEN=train_sed.data_loader.LEN
DIM=train_sed.data_loader.DIM
inputs=Input((LEN,DIM))
#add Gaussian noise Layer
if augmentation:
inputs_t=GaussianNoise(0.15)(inputs)
else:
inputs_t=inputs
outs=creat_model_sed(inputs_t,False)
#the model used for training
models=Model(inputs,outs)
LOG.info('------------start training------------')
train_sed.train(extra_model=models,train_mode='supervised')
#predict results for validation set and test set
train_sed.save_at_result() #audio tagging result
train_sed.save_sed_result() #event detection result
示例7: modelSharedEncoder
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import GaussianNoise [as 別名]
def modelSharedEncoder(self, name):
input = Input(shape=self.latent_dim)
x = self.resblk(input, 256)
z = GaussianNoise(stddev=1)(x, training=True)
return Model(inputs=input, outputs=z, name=name)
示例8: _build_model
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import GaussianNoise [as 別名]
def _build_model(self, nfeatures, architecture, supervised, confusion, confusion_incr, confusion_max,
activations, noise, droprate, coral_layer_idx, optimizer):
self.inp_a = tf.placeholder(tf.float32, shape=(None, nfeatures))
self.inp_b = tf.placeholder(tf.float32, shape=(None, nfeatures))
self.labels_a = tf.placeholder(tf.float32, shape=(None, 1))
self.lr = tf.placeholder(tf.float32, [], name='lr')
nlayers = len(architecture)
layers_a = [self.inp_a]
layers_b = [self.inp_b]
for i, nunits in enumerate(architecture):
print nunits,
if i in coral_layer_idx: print '(CORAL)'
else: print
if isinstance(nunits, int):
shared_layer = Dense(nunits, activation='linear')
elif nunits == 'noise':
shared_layer = GaussianNoise(noise)
elif nunits == 'bn':
shared_layer = BatchNormalization()
elif nunits == 'drop':
shared_layer = Dropout(droprate)
elif nunits == 'act':
if activations == 'prelu':
shared_layer = PReLU()
elif activations == 'elu':
shared_layer = ELU()
elif activations == 'leakyrelu':
shared_layer = LeakyReLU()
else:
shared_layer = Activation(activations)
layers_a += [shared_layer(layers_a[-1])]
layers_b += [shared_layer(layers_b[-1])]
示例9: _build
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import GaussianNoise [as 別名]
def _build(self, input_layer, arch, activations, noise, droprate, l2reg):
print 'Building network layers...'
network = [input_layer]
for nunits in arch:
print nunits
if isinstance(nunits, int):
network += [Dense(nunits, activation='linear', kernel_regularizer=l1_l2(l1=0.01, l2=l2reg))(network[-1])]
elif nunits == 'noise':
network += [GaussianNoise(noise)(network[-1])]
elif nunits == 'bn':
network += [BatchNormalization()(network[-1])]
elif nunits == 'drop':
network += [Dropout(droprate)(network[-1])]
elif nunits == 'act':
if activations == 'prelu':
network += [PReLU()(network[-1])]
elif activations == 'leakyrelu':
network += [LeakyReLU()(network[-1])]
elif activations == 'elu':
network += [ELU()(network[-1])]
else:
print 'Activation({})'.format(activations)
network += [Activation(activations)(network[-1])]
return network
示例10: _build_model
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import GaussianNoise [as 別名]
def _build_model(self, nfeatures, architecture, supervised, confusion, confusion_incr, confusion_max,
activations, noise, droprate, mmd_layer_idx, optimizer):
self.inp_a = tf.placeholder(tf.float32, shape=(None, nfeatures))
self.inp_b = tf.placeholder(tf.float32, shape=(None, nfeatures))
self.labels_a = tf.placeholder(tf.float32, shape=(None, 1))
nlayers = len(architecture)
layers_a = [self.inp_a]
layers_b = [self.inp_b]
for i, nunits in enumerate(architecture):
print nunits,
if i in mmd_layer_idx: print '(MMD)'
else: print
if isinstance(nunits, int):
shared_layer = Dense(nunits, activation='linear')
elif nunits == 'noise':
shared_layer = GaussianNoise(noise)
elif nunits == 'bn':
shared_layer = BatchNormalization()
elif nunits == 'drop':
shared_layer = Dropout(droprate)
elif nunits == 'act':
if activations == 'prelu':
shared_layer = PReLU()
elif activations == 'elu':
shared_layer = ELU()
elif activations == 'leakyrelu':
shared_layer = LeakyReLU()
else:
shared_layer = Activation(activations)
layers_a += [shared_layer(layers_a[-1])]
layers_b += [shared_layer(layers_b[-1])]
示例11: gaussian_noise
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import GaussianNoise [as 別名]
def gaussian_noise(layer, layer_in, layerId, tensor=True):
stddev = layer['params']['stddev']
out = {layerId: GaussianNoise(stddev=stddev)}
if tensor:
out[layerId] = out[layerId](*layer_in)
return out
示例12: test_keras_import
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import GaussianNoise [as 別名]
def test_keras_import(self):
model = Sequential()
model.add(GaussianNoise(stddev=0.1, input_shape=(16, 1)))
model.build()
self.keras_param_test(model, 0, 1)
示例13: test_keras_export
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import GaussianNoise [as 別名]
def test_keras_export(self):
tests = open(os.path.join(settings.BASE_DIR, 'tests', 'unit', 'keras_app',
'keras_export_test.json'), 'r')
response = json.load(tests)
tests.close()
net = yaml.safe_load(json.dumps(response['net']))
net = {'l0': net['Input'], 'l1': net['GaussianNoise']}
net['l0']['connection']['output'].append('l1')
inp = data(net['l0'], '', 'l0')['l0']
net = gaussian_noise(net['l1'], [inp], 'l1')
model = Model(inp, net['l1'])
self.assertEqual(model.layers[1].__class__.__name__, 'GaussianNoise')
示例14: semi_train
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import GaussianNoise [as 別名]
def semi_train(task_name,sed_model_name,at_model_name,augmentation):
""""
Training with semi-supervised learning (Guiding learning)
Args:
task_name: string
the name of the task
sed_model_name: string
the name of the the PS-model
at_model_name: string
the name of the the PT-model
augmentation: bool
whether to add Gaussian noise to the input of the PT-model
Return:
"""
#prepare for training of the PS-model
LOG.info('config preparation for %s'%at_model_name)
train_sed=trainer.trainer(task_name,sed_model_name,False)
#prepare for training of the PT-model
LOG.info('config preparation for %s'%sed_model_name)
train_at=trainer.trainer(task_name,at_model_name,False)
#connect the outputs of the two models to produce a model for end-to-end learning
creat_model_at=train_at.model_struct.graph()
creat_model_sed=train_sed.model_struct.graph()
LEN=train_sed.data_loader.LEN
DIM=train_sed.data_loader.DIM
inputs=Input((LEN,DIM))
#add Gaussian noise
if augmentation:
at_inputs=GaussianNoise(0.15)(inputs)
else:
at_inputs=inputs
at_out=creat_model_at(at_inputs,False)
sed_out=creat_model_sed(inputs,False)
out=concatenate([at_out,sed_out],axis=-1)
models=Model(inputs,out)
#start training (all intermediate files are saved in the PS-model dir)
LOG.info('------------start training------------')
train_sed.train(models)
#copy the final model to the PT-model dir from the PS-model dir
shutil.copyfile(train_sed.best_model_path,train_at.best_model_path)
#predict results for validation set and test set (the PT-model)
LOG.info('------------result of %s------------'%at_model_name)
train_at.save_at_result() #audio tagging result
#predict results for validation set and test set (the PS-model)
LOG.info('------------result of %s------------'%sed_model_name)
train_sed.save_at_result() #audio tagging result
train_sed.save_sed_result() #event detection result