本文整理匯總了Python中keras.layers.Dropout方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.Dropout方法的具體用法?Python layers.Dropout怎麽用?Python layers.Dropout使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類keras.layers
的用法示例。
在下文中一共展示了layers.Dropout方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _makenet
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Dropout [as 別名]
def _makenet(x, num_layers, dropout, random_seed):
from keras.layers import Dense, Dropout
dropout_seeder = random.Random(random_seed)
for i in range(num_layers - 1):
# add intermediate layers
if dropout:
x = Dropout(dropout, seed=dropout_seeder.randint(0, 10000))(x)
x = Dense(1024, activation="relu", name='dense_layer_{}'.format(i))(x)
if dropout:
# add the final dropout layer
x = Dropout(dropout, seed=dropout_seeder.randint(0, 10000))(x)
return x
示例2: RNNModel
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Dropout [as 別名]
def RNNModel(vocab_size, max_len, rnnConfig, model_type):
embedding_size = rnnConfig['embedding_size']
if model_type == 'inceptionv3':
# InceptionV3 outputs a 2048 dimensional vector for each image, which we'll feed to RNN Model
image_input = Input(shape=(2048,))
elif model_type == 'vgg16':
# VGG16 outputs a 4096 dimensional vector for each image, which we'll feed to RNN Model
image_input = Input(shape=(4096,))
image_model_1 = Dropout(rnnConfig['dropout'])(image_input)
image_model = Dense(embedding_size, activation='relu')(image_model_1)
caption_input = Input(shape=(max_len,))
# mask_zero: We zero pad inputs to the same length, the zero mask ignores those inputs. E.g. it is an efficiency.
caption_model_1 = Embedding(vocab_size, embedding_size, mask_zero=True)(caption_input)
caption_model_2 = Dropout(rnnConfig['dropout'])(caption_model_1)
caption_model = LSTM(rnnConfig['LSTM_units'])(caption_model_2)
# Merging the models and creating a softmax classifier
final_model_1 = concatenate([image_model, caption_model])
final_model_2 = Dense(rnnConfig['dense_units'], activation='relu')(final_model_1)
final_model = Dense(vocab_size, activation='softmax')(final_model_2)
model = Model(inputs=[image_input, caption_input], outputs=final_model)
model.compile(loss='categorical_crossentropy', optimizer='adam')
return model
示例3: get_model_41
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Dropout [as 別名]
def get_model_41(params):
embedding_weights = pickle.load(open("../data/datasets/train_data/embedding_weights_w2v-google_MSD-AG.pk","rb"))
# main sequential model
model = Sequential()
model.add(Embedding(len(embedding_weights[0]), params['embedding_dim'], input_length=params['sequence_length'],
weights=embedding_weights))
#model.add(Dropout(params['dropout_prob'][0], input_shape=(params['sequence_length'], params['embedding_dim'])))
model.add(LSTM(2048))
#model.add(Dropout(params['dropout_prob'][1]))
model.add(Dense(output_dim=params["n_out"], init="uniform"))
model.add(Activation(params['final_activation']))
logging.debug("Output CNN: %s" % str(model.output_shape))
if params['final_activation'] == 'linear':
model.add(Lambda(lambda x :K.l2_normalize(x, axis=1)))
return model
# CRNN Arch for audio
示例4: create_model
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Dropout [as 別名]
def create_model():
inputs = Input(shape=(length,), dtype='int32', name='inputs')
embedding_1 = Embedding(len(vocab), EMBED_DIM, input_length=length, mask_zero=True)(inputs)
bilstm = Bidirectional(LSTM(EMBED_DIM // 2, return_sequences=True))(embedding_1)
bilstm_dropout = Dropout(DROPOUT_RATE)(bilstm)
embedding_2 = Embedding(len(vocab), EMBED_DIM, input_length=length)(inputs)
con = Conv1D(filters=FILTERS, kernel_size=2 * HALF_WIN_SIZE + 1, padding='same')(embedding_2)
con_d = Dropout(DROPOUT_RATE)(con)
dense_con = TimeDistributed(Dense(DENSE_DIM))(con_d)
rnn_cnn = concatenate([bilstm_dropout, dense_con], axis=2)
dense = TimeDistributed(Dense(len(chunk_tags)))(rnn_cnn)
crf = CRF(len(chunk_tags), sparse_target=True)
crf_output = crf(dense)
model = Model(input=[inputs], output=[crf_output])
model.compile(loss=crf.loss_function, optimizer=Adam(), metrics=[crf.accuracy])
return model
示例5: modelA
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Dropout [as 別名]
def modelA():
model = Sequential()
model.add(Conv2D(64, (5, 5),
padding='valid'))
model.add(Activation('relu'))
model.add(Conv2D(64, (5, 5)))
model.add(Activation('relu'))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(FLAGS.NUM_CLASSES))
return model
示例6: modelB
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Dropout [as 別名]
def modelB():
model = Sequential()
model.add(Dropout(0.2, input_shape=(FLAGS.IMAGE_ROWS,
FLAGS.IMAGE_COLS,
FLAGS.NUM_CHANNELS)))
model.add(Convolution2D(64, 8, 8,
subsample=(2, 2),
border_mode='same'))
model.add(Activation('relu'))
model.add(Convolution2D(128, 6, 6,
subsample=(2, 2),
border_mode='valid'))
model.add(Activation('relu'))
model.add(Convolution2D(128, 5, 5,
subsample=(1, 1)))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Flatten())
model.add(Dense(FLAGS.NUM_CLASSES))
return model
示例7: modelC
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Dropout [as 別名]
def modelC():
model = Sequential()
model.add(Convolution2D(128, 3, 3,
border_mode='valid',
input_shape=(FLAGS.IMAGE_ROWS,
FLAGS.IMAGE_COLS,
FLAGS.NUM_CHANNELS)))
model.add(Activation('relu'))
model.add(Convolution2D(64, 3, 3))
model.add(Activation('relu'))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(FLAGS.NUM_CLASSES))
return model
示例8: __init__
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Dropout [as 別名]
def __init__(self, model_path=None):
if model_path is not None:
self.model = self.load_model(model_path)
else:
# VGG16 last conv features
inputs = Input(shape=(7, 7, 512))
x = Convolution2D(128, 1, 1)(inputs)
x = Flatten()(x)
# Cls head
h_cls = Dense(256, activation='relu', W_regularizer=l2(l=0.01))(x)
h_cls = Dropout(p=0.5)(h_cls)
cls_head = Dense(20, activation='softmax', name='cls')(h_cls)
# Reg head
h_reg = Dense(256, activation='relu', W_regularizer=l2(l=0.01))(x)
h_reg = Dropout(p=0.5)(h_reg)
reg_head = Dense(4, activation='linear', name='reg')(h_reg)
# Joint model
self.model = Model(input=inputs, output=[cls_head, reg_head])
示例9: build_discriminator
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Dropout [as 別名]
def build_discriminator(self):
z = Input(shape=(self.latent_dim, ))
img = Input(shape=self.img_shape)
d_in = concatenate([z, Flatten()(img)])
model = Dense(1024)(d_in)
model = LeakyReLU(alpha=0.2)(model)
model = Dropout(0.5)(model)
model = Dense(1024)(model)
model = LeakyReLU(alpha=0.2)(model)
model = Dropout(0.5)(model)
model = Dense(1024)(model)
model = LeakyReLU(alpha=0.2)(model)
model = Dropout(0.5)(model)
validity = Dense(1, activation="sigmoid")(model)
return Model([z, img], validity)
示例10: build_generator
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Dropout [as 別名]
def build_generator(self):
X = Input(shape=(self.img_dim,))
model = Sequential()
model.add(Dense(256, input_dim=self.img_dim))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dropout(0.4))
model.add(Dense(512))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dropout(0.4))
model.add(Dense(1024))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dropout(0.4))
model.add(Dense(self.img_dim, activation='tanh'))
X_translated = model(X)
return Model(X, X_translated)
示例11: modelD
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Dropout [as 別名]
def modelD():
model = Sequential()
model.add(Flatten(input_shape=(FLAGS.IMAGE_ROWS,
FLAGS.IMAGE_COLS,
FLAGS.NUM_CHANNELS)))
model.add(Dense(300, init='he_normal', activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(300, init='he_normal', activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(300, init='he_normal', activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(300, init='he_normal', activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(FLAGS.NUM_CLASSES))
return model
示例12: ann_model
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Dropout [as 別名]
def ann_model(input_shape):
inp = Input(shape=input_shape, name='mfcc_in')
model = inp
model = Conv1D(filters=12, kernel_size=(3), activation='relu')(model)
model = Conv1D(filters=12, kernel_size=(3), activation='relu')(model)
model = Flatten()(model)
model = Dense(56)(model)
model = Activation('relu')(model)
model = BatchNormalization()(model)
model = Dropout(0.2)(model)
model = Dense(28)(model)
model = Activation('relu')(model)
model = BatchNormalization()(model)
model = Dense(1)(model)
model = Activation('sigmoid')(model)
model = Model(inp, model)
return model
示例13: buildModel_DNN
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Dropout [as 別名]
def buildModel_DNN(Shape, nClasses, nLayers=3,Number_Node=100, dropout=0.5):
'''
buildModel_DNN(nFeatures, nClasses, nLayers=3,Numberof_NOde=100, dropout=0.5)
Build Deep neural networks (Multi-layer perceptron) Model for text classification
Shape is input feature space
nClasses is number of classes
nLayers is number of hidden Layer
Number_Node is number of unit in each hidden layer
dropout is dropout value for solving overfitting problem
'''
model = Sequential()
model.add(Dense(Number_Node, input_dim=Shape))
model.add(Dropout(dropout))
for i in range(0,nLayers):
model.add(Dense(Number_Node, activation='relu'))
model.add(Dropout(dropout))
model.add(Dense(nClasses, activation='softmax'))
model.compile(loss='sparse_categorical_crossentropy',
optimizer='RMSprop',
metrics=['accuracy'])
return model
示例14: weather_fnn
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Dropout [as 別名]
def weather_fnn(layers, lr,
decay, loss, seq_len,
input_features, output_features):
ori_inputs = Input(shape=(seq_len, input_features), name='input_layer')
#print(seq_len*input_features)
conv_ = Conv1D(11, kernel_size=13, strides=1,
data_format='channels_last',
padding='valid', activation='linear')(ori_inputs)
conv_ = BatchNormalization(name='BN_conv')(conv_)
conv_ = Activation('relu')(conv_)
conv_ = Conv1D(5, kernel_size=7, strides=1,
data_format='channels_last',
padding='valid', activation='linear')(conv_)
conv_ = BatchNormalization(name='BN_conv2')(conv_)
conv_ = Activation('relu')(conv_)
inputs = Reshape((-1,))(conv_)
for i, hidden_nums in enumerate(layers):
if i==0:
hn = Dense(hidden_nums, activation='linear')(inputs)
hn = BatchNormalization(name='BN_{}'.format(i))(hn)
hn = Activation('relu')(hn)
else:
hn = Dense(hidden_nums, activation='linear')(hn)
hn = BatchNormalization(name='BN_{}'.format(i))(hn)
hn = Activation('relu')(hn)
#hn = Dropout(0.1)(hn)
#print(seq_len, output_features)
#print(hn)
outputs = Dense(seq_len*output_features, activation='sigmoid', name='output_layer')(hn) # 37*3
outputs = Reshape((seq_len, output_features))(outputs)
weather_fnn = Model(ori_inputs, outputs=[outputs])
return weather_fnn
示例15: _get_model
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Dropout [as 別名]
def _get_model(X, cat_cols, num_cols, n_uniq, n_emb, output_activation):
inputs = []
num_inputs = []
embeddings = []
for i, col in enumerate(cat_cols):
if not n_uniq[i]:
n_uniq[i] = X[col].nunique()
if not n_emb[i]:
n_emb[i] = max(MIN_EMBEDDING, 2 * int(np.log2(n_uniq[i])))
_input = Input(shape=(1,), name=col)
_embed = Embedding(input_dim=n_uniq[i], output_dim=n_emb[i], name=col + EMBEDDING_SUFFIX)(_input)
_embed = Dropout(.2)(_embed)
_embed = Reshape((n_emb[i],))(_embed)
inputs.append(_input)
embeddings.append(_embed)
if num_cols:
num_inputs = Input(shape=(len(num_cols),), name='num_inputs')
merged_input = Concatenate(axis=1)(embeddings + [num_inputs])
inputs = inputs + [num_inputs]
else:
merged_input = Concatenate(axis=1)(embeddings)
x = BatchNormalization()(merged_input)
x = Dense(128, activation='relu')(x)
x = Dropout(.5)(x)
x = BatchNormalization()(x)
x = Dense(64, activation='relu')(x)
x = Dropout(.5)(x)
x = BatchNormalization()(x)
output = Dense(1, activation=output_activation)(x)
model = Model(inputs=inputs, outputs=output)
return model, n_emb, n_uniq