當前位置: 首頁>>代碼示例>>Python>>正文


Python layers.Dropout方法代碼示例

本文整理匯總了Python中keras.layers.Dropout方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.Dropout方法的具體用法?Python layers.Dropout怎麽用?Python layers.Dropout使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.layers的用法示例。


在下文中一共展示了layers.Dropout方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _makenet

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Dropout [as 別名]
def _makenet(x, num_layers, dropout, random_seed):
    from keras.layers import Dense, Dropout

    dropout_seeder = random.Random(random_seed)

    for i in range(num_layers - 1):
        # add intermediate layers
        if dropout:
            x = Dropout(dropout, seed=dropout_seeder.randint(0, 10000))(x)
        x = Dense(1024, activation="relu", name='dense_layer_{}'.format(i))(x)

    if dropout:
        # add the final dropout layer
        x = Dropout(dropout, seed=dropout_seeder.randint(0, 10000))(x)

    return x 
開發者ID:mme,項目名稱:vergeml,代碼行數:18,代碼來源:imagenet.py

示例2: RNNModel

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Dropout [as 別名]
def RNNModel(vocab_size, max_len, rnnConfig, model_type):
	embedding_size = rnnConfig['embedding_size']
	if model_type == 'inceptionv3':
		# InceptionV3 outputs a 2048 dimensional vector for each image, which we'll feed to RNN Model
		image_input = Input(shape=(2048,))
	elif model_type == 'vgg16':
		# VGG16 outputs a 4096 dimensional vector for each image, which we'll feed to RNN Model
		image_input = Input(shape=(4096,))
	image_model_1 = Dropout(rnnConfig['dropout'])(image_input)
	image_model = Dense(embedding_size, activation='relu')(image_model_1)

	caption_input = Input(shape=(max_len,))
	# mask_zero: We zero pad inputs to the same length, the zero mask ignores those inputs. E.g. it is an efficiency.
	caption_model_1 = Embedding(vocab_size, embedding_size, mask_zero=True)(caption_input)
	caption_model_2 = Dropout(rnnConfig['dropout'])(caption_model_1)
	caption_model = LSTM(rnnConfig['LSTM_units'])(caption_model_2)

	# Merging the models and creating a softmax classifier
	final_model_1 = concatenate([image_model, caption_model])
	final_model_2 = Dense(rnnConfig['dense_units'], activation='relu')(final_model_1)
	final_model = Dense(vocab_size, activation='softmax')(final_model_2)

	model = Model(inputs=[image_input, caption_input], outputs=final_model)
	model.compile(loss='categorical_crossentropy', optimizer='adam')
	return model 
開發者ID:dabasajay,項目名稱:Image-Caption-Generator,代碼行數:27,代碼來源:model.py

示例3: get_model_41

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Dropout [as 別名]
def get_model_41(params):
    embedding_weights = pickle.load(open("../data/datasets/train_data/embedding_weights_w2v-google_MSD-AG.pk","rb"))
    # main sequential model
    model = Sequential()
    model.add(Embedding(len(embedding_weights[0]), params['embedding_dim'], input_length=params['sequence_length'],
                        weights=embedding_weights))
    #model.add(Dropout(params['dropout_prob'][0], input_shape=(params['sequence_length'], params['embedding_dim'])))
    model.add(LSTM(2048))
    #model.add(Dropout(params['dropout_prob'][1]))
    model.add(Dense(output_dim=params["n_out"], init="uniform"))
    model.add(Activation(params['final_activation']))
    logging.debug("Output CNN: %s" % str(model.output_shape))

    if params['final_activation'] == 'linear':
        model.add(Lambda(lambda x :K.l2_normalize(x, axis=1)))

    return model


# CRNN Arch for audio 
開發者ID:sergiooramas,項目名稱:tartarus,代碼行數:22,代碼來源:models.py

示例4: create_model

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Dropout [as 別名]
def create_model():
    inputs = Input(shape=(length,), dtype='int32', name='inputs')
    embedding_1 = Embedding(len(vocab), EMBED_DIM, input_length=length, mask_zero=True)(inputs)
    bilstm = Bidirectional(LSTM(EMBED_DIM // 2, return_sequences=True))(embedding_1)
    bilstm_dropout = Dropout(DROPOUT_RATE)(bilstm)
    embedding_2 = Embedding(len(vocab), EMBED_DIM, input_length=length)(inputs)
    con = Conv1D(filters=FILTERS, kernel_size=2 * HALF_WIN_SIZE + 1, padding='same')(embedding_2)
    con_d = Dropout(DROPOUT_RATE)(con)
    dense_con = TimeDistributed(Dense(DENSE_DIM))(con_d)
    rnn_cnn = concatenate([bilstm_dropout, dense_con], axis=2)
    dense = TimeDistributed(Dense(len(chunk_tags)))(rnn_cnn)
    crf = CRF(len(chunk_tags), sparse_target=True)
    crf_output = crf(dense)
    model = Model(input=[inputs], output=[crf_output])
    model.compile(loss=crf.loss_function, optimizer=Adam(), metrics=[crf.accuracy])
    return model 
開發者ID:jtyoui,項目名稱:Jtyoui,代碼行數:18,代碼來源:cnn_rnn_crf.py

示例5: modelA

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Dropout [as 別名]
def modelA():
    model = Sequential()
    model.add(Conv2D(64, (5, 5),
                            padding='valid'))
    model.add(Activation('relu'))

    model.add(Conv2D(64, (5, 5)))
    model.add(Activation('relu'))

    model.add(Dropout(0.25))

    model.add(Flatten())
    model.add(Dense(128))
    model.add(Activation('relu'))

    model.add(Dropout(0.5))
    model.add(Dense(FLAGS.NUM_CLASSES))
    return model 
開發者ID:sunblaze-ucb,項目名稱:blackbox-attacks,代碼行數:20,代碼來源:mnist.py

示例6: modelB

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Dropout [as 別名]
def modelB():
    model = Sequential()
    model.add(Dropout(0.2, input_shape=(FLAGS.IMAGE_ROWS,
                                        FLAGS.IMAGE_COLS,
                                        FLAGS.NUM_CHANNELS)))
    model.add(Convolution2D(64, 8, 8,
                            subsample=(2, 2),
                            border_mode='same'))
    model.add(Activation('relu'))

    model.add(Convolution2D(128, 6, 6,
                            subsample=(2, 2),
                            border_mode='valid'))
    model.add(Activation('relu'))

    model.add(Convolution2D(128, 5, 5,
                            subsample=(1, 1)))
    model.add(Activation('relu'))

    model.add(Dropout(0.5))

    model.add(Flatten())
    model.add(Dense(FLAGS.NUM_CLASSES))
    return model 
開發者ID:sunblaze-ucb,項目名稱:blackbox-attacks,代碼行數:26,代碼來源:mnist.py

示例7: modelC

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Dropout [as 別名]
def modelC():
    model = Sequential()
    model.add(Convolution2D(128, 3, 3,
                            border_mode='valid',
                            input_shape=(FLAGS.IMAGE_ROWS,
                                         FLAGS.IMAGE_COLS,
                                         FLAGS.NUM_CHANNELS)))
    model.add(Activation('relu'))

    model.add(Convolution2D(64, 3, 3))
    model.add(Activation('relu'))

    model.add(Dropout(0.25))

    model.add(Flatten())
    model.add(Dense(128))
    model.add(Activation('relu'))

    model.add(Dropout(0.5))
    model.add(Dense(FLAGS.NUM_CLASSES))
    return model 
開發者ID:sunblaze-ucb,項目名稱:blackbox-attacks,代碼行數:23,代碼來源:mnist.py

示例8: __init__

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Dropout [as 別名]
def __init__(self, model_path=None):
        if model_path is not None:
            self.model = self.load_model(model_path)
        else:
            # VGG16 last conv features
            inputs = Input(shape=(7, 7, 512))
            x = Convolution2D(128, 1, 1)(inputs)
            x = Flatten()(x)

            # Cls head
            h_cls = Dense(256, activation='relu', W_regularizer=l2(l=0.01))(x)
            h_cls = Dropout(p=0.5)(h_cls)
            cls_head = Dense(20, activation='softmax', name='cls')(h_cls)

            # Reg head
            h_reg = Dense(256, activation='relu', W_regularizer=l2(l=0.01))(x)
            h_reg = Dropout(p=0.5)(h_reg)
            reg_head = Dense(4, activation='linear', name='reg')(h_reg)

            # Joint model
            self.model = Model(input=inputs, output=[cls_head, reg_head]) 
開發者ID:wiseodd,項目名稱:cnn-levelset,代碼行數:23,代碼來源:localizer.py

示例9: build_discriminator

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Dropout [as 別名]
def build_discriminator(self):

        z = Input(shape=(self.latent_dim, ))
        img = Input(shape=self.img_shape)
        d_in = concatenate([z, Flatten()(img)])

        model = Dense(1024)(d_in)
        model = LeakyReLU(alpha=0.2)(model)
        model = Dropout(0.5)(model)
        model = Dense(1024)(model)
        model = LeakyReLU(alpha=0.2)(model)
        model = Dropout(0.5)(model)
        model = Dense(1024)(model)
        model = LeakyReLU(alpha=0.2)(model)
        model = Dropout(0.5)(model)
        validity = Dense(1, activation="sigmoid")(model)

        return Model([z, img], validity) 
開發者ID:eriklindernoren,項目名稱:Keras-GAN,代碼行數:20,代碼來源:bigan.py

示例10: build_generator

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Dropout [as 別名]
def build_generator(self):

        X = Input(shape=(self.img_dim,))

        model = Sequential()
        model.add(Dense(256, input_dim=self.img_dim))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dropout(0.4))
        model.add(Dense(512))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dropout(0.4))
        model.add(Dense(1024))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dropout(0.4))
        model.add(Dense(self.img_dim, activation='tanh'))

        X_translated = model(X)

        return Model(X, X_translated) 
開發者ID:eriklindernoren,項目名稱:Keras-GAN,代碼行數:24,代碼來源:dualgan.py

示例11: modelD

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Dropout [as 別名]
def modelD():
    model = Sequential()

    model.add(Flatten(input_shape=(FLAGS.IMAGE_ROWS,
                                   FLAGS.IMAGE_COLS,
                                   FLAGS.NUM_CHANNELS)))

    model.add(Dense(300, init='he_normal', activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(300, init='he_normal', activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(300, init='he_normal', activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(300, init='he_normal', activation='relu'))
    model.add(Dropout(0.5))

    model.add(Dense(FLAGS.NUM_CLASSES))
    return model 
開發者ID:sunblaze-ucb,項目名稱:blackbox-attacks,代碼行數:20,代碼來源:mnist.py

示例12: ann_model

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Dropout [as 別名]
def ann_model(input_shape):

    inp = Input(shape=input_shape, name='mfcc_in')
    model = inp

    model = Conv1D(filters=12, kernel_size=(3), activation='relu')(model)
    model = Conv1D(filters=12, kernel_size=(3), activation='relu')(model)
    model = Flatten()(model)

    model = Dense(56)(model)
    model = Activation('relu')(model)
    model = BatchNormalization()(model)
    model = Dropout(0.2)(model)
    model = Dense(28)(model)
    model = Activation('relu')(model)
    model = BatchNormalization()(model)

    model = Dense(1)(model)
    model = Activation('sigmoid')(model)

    model = Model(inp, model)
    return model 
開發者ID:tympanix,項目名稱:subsync,代碼行數:24,代碼來源:train_ann.py

示例13: buildModel_DNN

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Dropout [as 別名]
def buildModel_DNN(Shape, nClasses, nLayers=3,Number_Node=100, dropout=0.5):
    '''
    buildModel_DNN(nFeatures, nClasses, nLayers=3,Numberof_NOde=100, dropout=0.5)
    Build Deep neural networks (Multi-layer perceptron) Model for text classification
    Shape is input feature space
    nClasses is number of classes
    nLayers is number of hidden Layer
    Number_Node is number of unit in each hidden layer
    dropout is dropout value for solving overfitting problem
    '''
    model = Sequential()
    model.add(Dense(Number_Node, input_dim=Shape))
    model.add(Dropout(dropout))
    for i in range(0,nLayers):
        model.add(Dense(Number_Node, activation='relu'))
        model.add(Dropout(dropout))
    model.add(Dense(nClasses, activation='softmax'))
    model.compile(loss='sparse_categorical_crossentropy',
                  optimizer='RMSprop',
                  metrics=['accuracy'])

    return model 
開發者ID:kk7nc,項目名稱:HDLTex,代碼行數:24,代碼來源:BuildModel.py

示例14: weather_fnn

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Dropout [as 別名]
def weather_fnn(layers, lr,
            decay, loss, seq_len, 
            input_features, output_features):
    
    ori_inputs = Input(shape=(seq_len, input_features), name='input_layer')
    #print(seq_len*input_features)
    conv_ = Conv1D(11, kernel_size=13, strides=1, 
                        data_format='channels_last', 
                        padding='valid', activation='linear')(ori_inputs)
    conv_ = BatchNormalization(name='BN_conv')(conv_)
    conv_ = Activation('relu')(conv_)
    conv_ = Conv1D(5, kernel_size=7, strides=1, 
                        data_format='channels_last', 
                        padding='valid', activation='linear')(conv_)
    conv_ = BatchNormalization(name='BN_conv2')(conv_)
    conv_ = Activation('relu')(conv_)

    inputs = Reshape((-1,))(conv_)

    for i, hidden_nums in enumerate(layers):
        if i==0:
            hn = Dense(hidden_nums, activation='linear')(inputs)
            hn = BatchNormalization(name='BN_{}'.format(i))(hn)
            hn = Activation('relu')(hn)
        else:
            hn = Dense(hidden_nums, activation='linear')(hn)
            hn = BatchNormalization(name='BN_{}'.format(i))(hn)
            hn = Activation('relu')(hn)
            #hn = Dropout(0.1)(hn)
    #print(seq_len, output_features)
    #print(hn)
    outputs = Dense(seq_len*output_features, activation='sigmoid', name='output_layer')(hn) # 37*3
    outputs = Reshape((seq_len, output_features))(outputs)

    weather_fnn = Model(ori_inputs, outputs=[outputs])

    return weather_fnn 
開發者ID:BruceBinBoxing,項目名稱:Deep_Learning_Weather_Forecasting,代碼行數:39,代碼來源:weather_model.py

示例15: _get_model

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Dropout [as 別名]
def _get_model(X, cat_cols, num_cols, n_uniq, n_emb, output_activation):
        inputs = []
        num_inputs = []
        embeddings = []
        for i, col in enumerate(cat_cols):

            if not n_uniq[i]:
                n_uniq[i] = X[col].nunique()
            if not n_emb[i]:
                n_emb[i] = max(MIN_EMBEDDING, 2 * int(np.log2(n_uniq[i])))

            _input = Input(shape=(1,), name=col)
            _embed = Embedding(input_dim=n_uniq[i], output_dim=n_emb[i], name=col + EMBEDDING_SUFFIX)(_input)
            _embed = Dropout(.2)(_embed)
            _embed = Reshape((n_emb[i],))(_embed)

            inputs.append(_input)
            embeddings.append(_embed)

        if num_cols:
            num_inputs = Input(shape=(len(num_cols),), name='num_inputs')
            merged_input = Concatenate(axis=1)(embeddings + [num_inputs])

            inputs = inputs + [num_inputs]
        else:
            merged_input = Concatenate(axis=1)(embeddings)

        x = BatchNormalization()(merged_input)
        x = Dense(128, activation='relu')(x)
        x = Dropout(.5)(x)
        x = BatchNormalization()(x)
        x = Dense(64, activation='relu')(x)
        x = Dropout(.5)(x)
        x = BatchNormalization()(x)
        output = Dense(1, activation=output_activation)(x)

        model = Model(inputs=inputs, outputs=output)

        return model, n_emb, n_uniq 
開發者ID:jeongyoonlee,項目名稱:Kaggler,代碼行數:41,代碼來源:categorical.py


注:本文中的keras.layers.Dropout方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。