本文整理匯總了Python中keras.layers.Dot方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.Dot方法的具體用法?Python layers.Dot怎麽用?Python layers.Dot使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類keras.layers
的用法示例。
在下文中一共展示了layers.Dot方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: build
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Dot [as 別名]
def build(self):
"""
Build model structure.
DSSM use Siamese arthitecture.
"""
dim_triletter = self._params['input_shapes'][0][0]
input_shape = (dim_triletter,)
base_network = self._make_multi_layer_perceptron_layer()
# Left input and right input.
input_left = Input(name='text_left', shape=input_shape)
input_right = Input(name='text_right', shape=input_shape)
# Process left & right input.
x = [base_network(input_left),
base_network(input_right)]
# Dot product with cosine similarity.
x = Dot(axes=[1, 1], normalize=True)(x)
x_out = self._make_output_layer()(x)
self._backend = Model(
inputs=[input_left, input_right],
outputs=x_out)
示例2: seq2seq_attention
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Dot [as 別名]
def seq2seq_attention(feature_len=1, after_day=1, input_shape=(20, 1), time_step=20):
# Define the inputs of your model with a shape (Tx, feature)
X = Input(shape=input_shape)
# Initialize empty list of outputs
all_outputs = []
# Encoder: pre-attention LSTM
encoder = LSTM(units=100, return_state=True, return_sequences=True, name='encoder')
# Decoder: post-attention LSTM
decoder = LSTM(units=100, return_state=True, name='decoder')
# Output
decoder_output = Dense(units=feature_len, activation='linear', name='output')
model_output = Reshape((1, feature_len))
# Attention
repeator = RepeatVector(time_step)
concatenator = Concatenate(axis=-1)
densor = Dense(1, activation = "relu")
activator = Activation(softmax, name='attention_weights')
dotor = Dot(axes = 1)
encoder_outputs, s, c = encoder(X)
for t in range(after_day):
context = one_step_attention(encoder_outputs, s, repeator, concatenator, densor, activator, dotor)
a, s, c = decoder(context, initial_state=[s, c])
outputs = decoder_output(a)
outputs = model_output(outputs)
all_outputs.append(outputs)
all_outputs = Lambda(lambda x: K.concatenate(x, axis=1))(all_outputs)
model = Model(inputs=X, outputs=all_outputs)
return model
示例3: seq2seq_attention
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Dot [as 別名]
def seq2seq_attention(feature_len=1, after_day=1, input_shape=(20, 1), time_step=20):
# Define the inputs of your model with a shape (Tx, feature)
X = Input(shape=input_shape)
s0 = Input(shape=(100, ), name='s0')
c0 = Input(shape=(100, ), name='c0')
s = s0
c = c0
# Initialize empty list of outputs
all_outputs = []
# Encoder: pre-attention LSTM
encoder = LSTM(units=100, return_state=False, return_sequences=True, name='encoder')
# Decoder: post-attention LSTM
decoder = LSTM(units=100, return_state=True, name='decoder')
# Output
decoder_output = Dense(units=feature_len, activation='linear', name='output')
model_output = Reshape((1, feature_len))
# Attention
repeator = RepeatVector(time_step)
concatenator = Concatenate(axis=-1)
densor = Dense(1, activation = "relu")
activator = Activation(softmax, name='attention_weights')
dotor = Dot(axes = 1)
encoder_outputs = encoder(X)
for t in range(after_day):
context = one_step_attention(encoder_outputs, s, repeator, concatenator, densor, activator, dotor)
a, s, c = decoder(context, initial_state=[s, c])
outputs = decoder_output(a)
outputs = model_output(outputs)
all_outputs.append(outputs)
all_outputs = Lambda(lambda x: K.concatenate(x, axis=1))(all_outputs)
model = Model(inputs=[X, s0, c0], outputs=all_outputs)
return model
示例4: test_merge_dot
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Dot [as 別名]
def test_merge_dot():
i1 = layers.Input(shape=(4,))
i2 = layers.Input(shape=(4,))
o = layers.dot([i1, i2], axes=1)
assert o._keras_shape == (None, 1)
model = models.Model([i1, i2], o)
dot_layer = layers.Dot(axes=1)
o2 = dot_layer([i1, i2])
assert dot_layer.output_shape == (None, 1)
x1 = np.random.random((2, 4))
x2 = np.random.random((2, 4))
out = model.predict([x1, x2])
assert out.shape == (2, 1)
expected = np.zeros((2, 1))
expected[0, 0] = np.dot(x1[0], x2[0])
expected[1, 0] = np.dot(x1[1], x2[1])
assert_allclose(out, expected, atol=1e-4)
# Test with negative tuple of axes.
o = layers.dot([i1, i2], axes=(-1, -1))
assert o._keras_shape == (None, 1)
model = models.Model([i1, i2], o)
out = model.predict([x1, x2])
assert out.shape == (2, 1)
assert_allclose(out, expected, atol=1e-4)
示例5: build
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Dot [as 別名]
def build(self):
# qd_input = Input((self.config.kernel_size,), name="qd_input")
dd_input = Input((self.config.nb_supervised_doc, self.config.kernel_size), name='dd_input')
# z = Dense(self.config.hidden_size, activation='tanh', name="qd_hidden")(qd_input)
# qd_out = Dense(self.config.out_size, name="qd_out")(z)
z = Dense(self.config.hidden_size, activation='tanh', name="dd_hidden")(dd_input)
dd_init_out = Dense(self.config.out_size, name='dd_init_out')(z)
dd_gate = Input((self.config.nb_supervised_doc, 1), name='baseline_doc_score')
dd_w = Dense(1, kernel_initializer=self.initializer_gate, use_bias=False, name='dd_gate')(dd_gate)
# dd_w = Lambda(lambda x: softmax(x, axis=1), output_shape=(self.config.nb_supervised_doc,), name='dd_softmax')(dd_w)
dd_w = Reshape((self.config.nb_supervised_doc,))(dd_w)
dd_init_out = Reshape((self.config.nb_supervised_doc,))(dd_init_out)
if self.config.method in [1, 3]: # no doc gating, with dense layer
z = dd_init_out
elif self.config.method == 2:
logging.info("Apply doc gating")
z = Multiply(name='dd_out')([dd_init_out, dd_w])
else:
raise ValueError("Method not initialized, please check config file")
if self.config.method in [1, 2]:
logging.info("Dense layer on top")
z = Dense(self.config.merge_hidden, activation='tanh', name='merge_hidden')(z)
out = Dense(self.config.merge_out, name='score')(z)
else:
logging.info("Apply doc gating, No dense layer on top, sum up scores")
out = Dot(axes=[1, 1], name='score')([z, dd_w])
model = Model(inputs=[dd_input, dd_gate], outputs=[out])
print(model.summary())
return model
示例6: soft_attention_alignment
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Dot [as 別名]
def soft_attention_alignment(input_1, input_2):
"Align text representation with neural soft attention"
attention = Dot(axes=-1)([input_1, input_2])
w_att_1 = Lambda(lambda x: softmax(x, axis=1),
output_shape=unchanged_shape)(attention)
w_att_2 = Permute((2, 1))(Lambda(lambda x: softmax(x, axis=2),
output_shape=unchanged_shape)(attention))
in1_aligned = Dot(axes=1)([w_att_1, input_1])
in2_aligned = Dot(axes=1)([w_att_2, input_2])
return in1_aligned, in2_aligned
示例7: connect_models
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Dot [as 別名]
def connect_models(a, b):
"""Connect two keras models affinely.
The models, a and b, are connected as decoupling * u_nom + a(input)' u_pert
+ b(input).
Let s be the input size of both models, m be the number of inputs.
Outputs keras model (R^m * R^s * R^m * R^m -> R).
Inputs:
Linear term, a: keras model (R^s -> R^m)
Scalar term, b: keras model (R^s -> R)
"""
s, m = a.input_shape[-1], a.output_shape[-1]
input = Input((s,))
u_nom = Input((m,))
u_pert = Input((m,))
decoupling = Input((m,))
a = a(input)
b = b(input)
u = Add()([u_nom, u_pert])
known = Dot([1, 1])([decoupling, u_pert])
unknown = Add()([Dot([1, 1])([a, u]), b])
V_dot_r = Add()([known, unknown])
return Model([decoupling, input, u_nom, u_pert], V_dot_r)
示例8: glove_model
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Dot [as 別名]
def glove_model(vocab_size=10, vector_dim=3):
"""
A Keras implementation of the GloVe architecture
:param vocab_size: The number of distinct words
:param vector_dim: The vector dimension of each word
:return:
"""
input_target = Input((1,), name='central_word_id')
input_context = Input((1,), name='context_word_id')
central_embedding = Embedding(vocab_size, vector_dim, input_length=1, name=CENTRAL_EMBEDDINGS)
central_bias = Embedding(vocab_size, 1, input_length=1, name=CENTRAL_BIASES)
context_embedding = Embedding(vocab_size, vector_dim, input_length=1, name=CONTEXT_EMBEDDINGS)
context_bias = Embedding(vocab_size, 1, input_length=1, name=CONTEXT_BIASES)
vector_target = central_embedding(input_target)
vector_context = context_embedding(input_context)
bias_target = central_bias(input_target)
bias_context = context_bias(input_context)
dot_product = Dot(axes=-1)([vector_target, vector_context])
dot_product = Reshape((1, ))(dot_product)
bias_target = Reshape((1,))(bias_target)
bias_context = Reshape((1,))(bias_context)
prediction = Add()([dot_product, bias_target, bias_context])
model = Model(inputs=[input_target, input_context], outputs=prediction)
model.compile(loss=custom_loss, optimizer=Adam())
return model
示例9: build
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Dot [as 別名]
def build(self):
dd_q_input = Input((self.config.nb_supervised_doc, self.config.doc_topk_term, 1), name='dd_q_input')
dd_d_input = Input((self.config.nb_supervised_doc, self.config.doc_topk_term,
self.config.hist_size), name='dd_d_input')
dd_q_w = Dense(1, kernel_initializer=self.initializer_gate, use_bias=False, name='dd_q_gate')(dd_q_input)
dd_q_w = Lambda(lambda x: softmax(x, axis=2), output_shape=(
self.config.nb_supervised_doc, self.config.doc_topk_term,), name='dd_q_softmax')(dd_q_w)
z = dd_d_input
for i in range(self.config.nb_layers):
z = Dense(self.config.hidden_size[i], activation='tanh',
kernel_initializer=self.initializer_fc, name='hidden')(z)
z = Dense(self.config.out_size, kernel_initializer=self.initializer_fc, name='dd_d_gate')(z)
z = Reshape((self.config.nb_supervised_doc, self.config.doc_topk_term,))(z)
dd_q_w = Reshape((self.config.nb_supervised_doc, self.config.doc_topk_term,))(dd_q_w)
# out = Dot(axes=[2, 2], name='dd_pseudo_out')([z, dd_q_w])
out = Lambda(lambda x: K.batch_dot(x[0], x[1], axes=[2, 2]), name='dd_pseudo_out')([z, dd_q_w])
dd_init_out = Lambda(lambda x: tf.matrix_diag_part(x), output_shape=(self.config.nb_supervised_doc,), name='dd_init_out')(out)
'''
dd_init_out = Lambda(lambda x: tf.reduce_sum(x, axis=2), output_shape=(self.config.nb_supervised_doc,))(z)
'''
#dd_out = Reshape((self.config.nb_supervised_doc,))(dd_out)
# dd out gating
dd_gate = Input((self.config.nb_supervised_doc, 1), name='baseline_doc_score')
dd_w = Dense(1, kernel_initializer=self.initializer_gate, use_bias=False, name='dd_gate')(dd_gate)
# dd_w = Lambda(lambda x: softmax(x, axis=1), output_shape=(self.config.nb_supervised_doc,), name='dd_softmax')(dd_w)
# dd_out = Dot(axes=[1, 1], name='dd_out')([dd_init_out, dd_w])
dd_w = Reshape((self.config.nb_supervised_doc,))(dd_w)
dd_init_out = Reshape((self.config.nb_supervised_doc,))(dd_init_out)
if self.config.method in [1, 3]: # no doc gating, with dense layer
z = dd_init_out
elif self.config.method == 2:
logging.info("Apply doc gating")
z = Multiply(name='dd_out')([dd_init_out, dd_w])
else:
raise ValueError("Method not initialized, please check config file")
if self.config.method in [1, 2]:
logging.info("Dense layer on top")
z = Dense(self.config.merge_hidden, activation='tanh', name='merge_hidden')(z)
out = Dense(self.config.merge_out, name='score')(z)
else:
logging.info("Apply doc gating, No dense layer on top, sum up scores")
out = Dot(axes=[1, 1], name='score')([z, dd_w])
model = Model(inputs=[dd_q_input, dd_d_input, dd_gate], outputs=[out])
print(model.summary())
return model