當前位置: 首頁>>代碼示例>>Python>>正文


Python layers.Dense方法代碼示例

本文整理匯總了Python中keras.layers.Dense方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.Dense方法的具體用法?Python layers.Dense怎麽用?Python layers.Dense使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.layers的用法示例。


在下文中一共展示了layers.Dense方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: create_model

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Dense [as 別名]
def create_model(time_window_size, metric):
        model = Sequential()

        model.add(Conv1D(filters=256, kernel_size=5, padding='same', activation='relu',
                         input_shape=(time_window_size, 1)))
        model.add(MaxPooling1D(pool_size=4))

        model.add(LSTM(64))

        model.add(Dense(units=time_window_size, activation='linear'))

        model.compile(optimizer='adam', loss='mean_squared_error', metrics=[metric])

        # model.compile(optimizer='adam', loss='mean_squared_error', metrics=[metric])
        # model.compile(optimizer="sgd", loss="mse", metrics=[metric])

        print(model.summary())
        return model 
開發者ID:chen0040,項目名稱:keras-anomaly-detection,代碼行數:20,代碼來源:recurrent.py

示例2: _makenet

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Dense [as 別名]
def _makenet(x, num_layers, dropout, random_seed):
    from keras.layers import Dense, Dropout

    dropout_seeder = random.Random(random_seed)

    for i in range(num_layers - 1):
        # add intermediate layers
        if dropout:
            x = Dropout(dropout, seed=dropout_seeder.randint(0, 10000))(x)
        x = Dense(1024, activation="relu", name='dense_layer_{}'.format(i))(x)

    if dropout:
        # add the final dropout layer
        x = Dropout(dropout, seed=dropout_seeder.randint(0, 10000))(x)

    return x 
開發者ID:mme,項目名稱:vergeml,代碼行數:18,代碼來源:imagenet.py

示例3: _save

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Dense [as 別名]
def _save(model, base_model, layers, labels, random_seed, checkpoints_dir):
    from keras.layers import Flatten, Dense
    from keras import Model
    nclasses = len(labels)
    x = Flatten()(base_model.output)
    x = _makenet(x, layers, dropout=None, random_seed=random_seed)
    predictions = Dense(nclasses, activation="softmax", name="predictions")(x)
    model_final = Model(inputs=base_model.input, outputs=predictions)

    for i in range(layers - 1):
        weights = model.get_layer(name='dense_layer_{}'.format(i)).get_weights()
        model_final.get_layer(name='dense_layer_{}'.format(i)).set_weights(weights)

    weights = model.get_layer(name='predictions').get_weights()
    model_final.get_layer(name='predictions').set_weights(weights)

    model_final.save(os.path.join(checkpoints_dir, "model.h5"))
    with open(os.path.join(checkpoints_dir, "labels.txt"), "w") as f:
        f.write("\n".join(labels))
    return model_final 
開發者ID:mme,項目名稱:vergeml,代碼行數:22,代碼來源:imagenet.py

示例4: RNNModel

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Dense [as 別名]
def RNNModel(vocab_size, max_len, rnnConfig, model_type):
	embedding_size = rnnConfig['embedding_size']
	if model_type == 'inceptionv3':
		# InceptionV3 outputs a 2048 dimensional vector for each image, which we'll feed to RNN Model
		image_input = Input(shape=(2048,))
	elif model_type == 'vgg16':
		# VGG16 outputs a 4096 dimensional vector for each image, which we'll feed to RNN Model
		image_input = Input(shape=(4096,))
	image_model_1 = Dropout(rnnConfig['dropout'])(image_input)
	image_model = Dense(embedding_size, activation='relu')(image_model_1)

	caption_input = Input(shape=(max_len,))
	# mask_zero: We zero pad inputs to the same length, the zero mask ignores those inputs. E.g. it is an efficiency.
	caption_model_1 = Embedding(vocab_size, embedding_size, mask_zero=True)(caption_input)
	caption_model_2 = Dropout(rnnConfig['dropout'])(caption_model_1)
	caption_model = LSTM(rnnConfig['LSTM_units'])(caption_model_2)

	# Merging the models and creating a softmax classifier
	final_model_1 = concatenate([image_model, caption_model])
	final_model_2 = Dense(rnnConfig['dense_units'], activation='relu')(final_model_1)
	final_model = Dense(vocab_size, activation='softmax')(final_model_2)

	model = Model(inputs=[image_input, caption_input], outputs=final_model)
	model.compile(loss='categorical_crossentropy', optimizer='adam')
	return model 
開發者ID:dabasajay,項目名稱:Image-Caption-Generator,代碼行數:27,代碼來源:model.py

示例5: create_model

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Dense [as 別名]
def create_model(self, input_dim):
        encoding_dim = 14
        input_layer = Input(shape=(input_dim,))

        encoder = Dense(encoding_dim, activation="tanh",
                        activity_regularizer=regularizers.l1(10e-5))(input_layer)
        encoder = Dense(encoding_dim // 2, activation="relu")(encoder)

        decoder = Dense(encoding_dim // 2, activation='tanh')(encoder)
        decoder = Dense(input_dim, activation='relu')(decoder)

        model = Model(inputs=input_layer, outputs=decoder)
        model.compile(optimizer='adam',
                      loss='mean_squared_error',
                      metrics=['accuracy'])

        return model 
開發者ID:chen0040,項目名稱:keras-anomaly-detection,代碼行數:19,代碼來源:feedforward.py

示例6: weather_l2

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Dense [as 別名]
def weather_l2(hidden_nums=100,l2=0.01): 
    input_img = Input(shape=(37,))
    hn = Dense(hidden_nums, activation='relu')(input_img)
    hn = Dense(hidden_nums, activation='relu',
               kernel_regularizer=regularizers.l2(l2))(hn)
    out_u = Dense(37, activation='sigmoid',                 
                  name='ae_part')(hn)
    out_sig = Dense(37, activation='linear', 
                    name='pred_part')(hn)
    out_both = concatenate([out_u, out_sig], axis=1, name = 'concatenate')

    #weather_model = Model(input_img, outputs=[out_ae, out_pred])
    mve_model = Model(input_img, outputs=[out_both])
    mve_model.compile(optimizer='adam', loss=mve_loss, loss_weights=[1.])
    
    return mve_model 
開發者ID:BruceBinBoxing,項目名稱:Deep_Learning_Weather_Forecasting,代碼行數:18,代碼來源:weather_model.py

示例7: CausalCNN

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Dense [as 別名]
def CausalCNN(n_filters, lr, decay, loss, 
               seq_len, input_features, 
               strides_len, kernel_size,
               dilation_rates):

    inputs = Input(shape=(seq_len, input_features), name='input_layer')   
    x=inputs
    for dilation_rate in dilation_rates:
        x = Conv1D(filters=n_filters,
               kernel_size=kernel_size, 
               padding='causal',
               dilation_rate=dilation_rate,
               activation='linear')(x) 
        x = BatchNormalization()(x)
        x = Activation('relu')(x)

    #x = Dense(7, activation='relu', name='dense_layer')(x)
    outputs = Dense(3, activation='sigmoid', name='output_layer')(x)
    causalcnn = Model(inputs, outputs=[outputs])

    return causalcnn 
開發者ID:BruceBinBoxing,項目名稱:Deep_Learning_Weather_Forecasting,代碼行數:23,代碼來源:weather_model.py

示例8: weather_ae

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Dense [as 別名]
def weather_ae(layers, lr, decay, loss, 
               input_len, input_features):
    
    inputs = Input(shape=(input_len, input_features), name='input_layer')
    
    for i, hidden_nums in enumerate(layers):
        if i==0:
            hn = Dense(hidden_nums, activation='relu')(inputs)
        else:
            hn = Dense(hidden_nums, activation='relu')(hn)

    outputs = Dense(3, activation='sigmoid', name='output_layer')(hn)

    weather_model = Model(inputs, outputs=[outputs])

    return weather_model 
開發者ID:BruceBinBoxing,項目名稱:Deep_Learning_Weather_Forecasting,代碼行數:18,代碼來源:weather_model.py

示例9: __init__

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Dense [as 別名]
def __init__(self, model_path=None):
        if model_path is not None:
            self.model = self.load_model(model_path)
        else:
            # VGG16 last conv features
            inputs = Input(shape=(7, 7, 512))
            x = Convolution2D(128, 1, 1)(inputs)
            x = Flatten()(x)

            # Cls head
            h_cls = Dense(256, activation='relu', W_regularizer=l2(l=0.01))(x)
            h_cls = Dropout(p=0.5)(h_cls)
            cls_head = Dense(20, activation='softmax', name='cls')(h_cls)

            # Reg head
            h_reg = Dense(256, activation='relu', W_regularizer=l2(l=0.01))(x)
            h_reg = Dropout(p=0.5)(h_reg)
            reg_head = Dense(4, activation='linear', name='reg')(h_reg)

            # Joint model
            self.model = Model(input=inputs, output=[cls_head, reg_head]) 
開發者ID:wiseodd,項目名稱:cnn-levelset,代碼行數:23,代碼來源:localizer.py

示例10: build_generator

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Dense [as 別名]
def build_generator(self):

        model = Sequential()

        model.add(Dense(128 * 7 * 7, activation="relu", input_dim=self.latent_dim))
        model.add(Reshape((7, 7, 128)))
        model.add(BatchNormalization(momentum=0.8))
        model.add(UpSampling2D())
        model.add(Conv2D(128, kernel_size=3, padding="same"))
        model.add(Activation("relu"))
        model.add(BatchNormalization(momentum=0.8))
        model.add(UpSampling2D())
        model.add(Conv2D(64, kernel_size=3, padding="same"))
        model.add(Activation("relu"))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Conv2D(1, kernel_size=3, padding="same"))
        model.add(Activation("tanh"))

        model.summary()

        noise = Input(shape=(self.latent_dim,))
        img = model(noise)

        return Model(noise, img) 
開發者ID:eriklindernoren,項目名稱:Keras-GAN,代碼行數:26,代碼來源:sgan.py

示例11: build_discriminator

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Dense [as 別名]
def build_discriminator(self):

        model = Sequential()

        model.add(Conv2D(64, kernel_size=3, strides=2, input_shape=self.missing_shape, padding="same"))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Conv2D(128, kernel_size=3, strides=2, padding="same"))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Conv2D(256, kernel_size=3, padding="same"))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Flatten())
        model.add(Dense(1, activation='sigmoid'))
        model.summary()

        img = Input(shape=self.missing_shape)
        validity = model(img)

        return Model(img, validity) 
開發者ID:eriklindernoren,項目名稱:Keras-GAN,代碼行數:23,代碼來源:context_encoder.py

示例12: build_discriminator

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Dense [as 別名]
def build_discriminator(self):

        img = Input(shape=self.img_shape)

        model = Sequential()
        model.add(Conv2D(64, kernel_size=4, strides=2, padding='same', input_shape=self.img_shape))
        model.add(LeakyReLU(alpha=0.8))
        model.add(Conv2D(128, kernel_size=4, strides=2, padding='same'))
        model.add(LeakyReLU(alpha=0.2))
        model.add(InstanceNormalization())
        model.add(Conv2D(256, kernel_size=4, strides=2, padding='same'))
        model.add(LeakyReLU(alpha=0.2))
        model.add(InstanceNormalization())

        model.summary()

        img = Input(shape=self.img_shape)
        features = model(img)

        validity = Conv2D(1, kernel_size=4, strides=1, padding='same')(features)

        label = Flatten()(features)
        label = Dense(self.num_classes+1, activation="softmax")(label)

        return Model(img, [validity, label]) 
開發者ID:eriklindernoren,項目名稱:Keras-GAN,代碼行數:27,代碼來源:ccgan.py

示例13: build_encoder

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Dense [as 別名]
def build_encoder(self):
        model = Sequential()

        model.add(Flatten(input_shape=self.img_shape))
        model.add(Dense(512))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dense(512))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dense(self.latent_dim))

        model.summary()

        img = Input(shape=self.img_shape)
        z = model(img)

        return Model(img, z) 
開發者ID:eriklindernoren,項目名稱:Keras-GAN,代碼行數:20,代碼來源:bigan.py

示例14: build_discriminator

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Dense [as 別名]
def build_discriminator(self):

        z = Input(shape=(self.latent_dim, ))
        img = Input(shape=self.img_shape)
        d_in = concatenate([z, Flatten()(img)])

        model = Dense(1024)(d_in)
        model = LeakyReLU(alpha=0.2)(model)
        model = Dropout(0.5)(model)
        model = Dense(1024)(model)
        model = LeakyReLU(alpha=0.2)(model)
        model = Dropout(0.5)(model)
        model = Dense(1024)(model)
        model = LeakyReLU(alpha=0.2)(model)
        model = Dropout(0.5)(model)
        validity = Dense(1, activation="sigmoid")(model)

        return Model([z, img], validity) 
開發者ID:eriklindernoren,項目名稱:Keras-GAN,代碼行數:20,代碼來源:bigan.py

示例15: build_classifier

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Dense [as 別名]
def build_classifier(self):

        def clf_layer(layer_input, filters, f_size=4, normalization=True):
            """Classifier layer"""
            d = Conv2D(filters, kernel_size=f_size, strides=2, padding='same')(layer_input)
            d = LeakyReLU(alpha=0.2)(d)
            if normalization:
                d = InstanceNormalization()(d)
            return d

        img = Input(shape=self.img_shape)

        c1 = clf_layer(img, self.cf, normalization=False)
        c2 = clf_layer(c1, self.cf*2)
        c3 = clf_layer(c2, self.cf*4)
        c4 = clf_layer(c3, self.cf*8)
        c5 = clf_layer(c4, self.cf*8)

        class_pred = Dense(self.num_classes, activation='softmax')(Flatten()(c5))

        return Model(img, class_pred) 
開發者ID:eriklindernoren,項目名稱:Keras-GAN,代碼行數:23,代碼來源:pixelda.py


注:本文中的keras.layers.Dense方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。