本文整理匯總了Python中keras.layers.CuDNNLSTM方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.CuDNNLSTM方法的具體用法?Python layers.CuDNNLSTM怎麽用?Python layers.CuDNNLSTM使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類keras.layers
的用法示例。
在下文中一共展示了layers.CuDNNLSTM方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: create
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import CuDNNLSTM [as 別名]
def create(inputtokens, vocabsize, units=16, dropout=0, embedding=32):
input_ = Input(shape=(inputtokens,), dtype='int32')
# Embedding layer
net = Embedding(input_dim=vocabsize, output_dim=embedding, input_length=inputtokens)(input_)
net = Dropout(dropout)(net)
# Bidirectional LSTM layer
net = BatchNormalization()(net)
net = Bidirectional(CuDNNLSTM(units))(net)
net = Dropout(dropout)(net)
# Output layer
net = Dense(vocabsize, activation='softmax')(net)
model = Model(inputs=input_, outputs=net)
# Make data-parallel
ngpus = len(get_available_gpus())
if ngpus > 1:
model = make_parallel(model, ngpus)
return model
示例2: nnet
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import CuDNNLSTM [as 別名]
def nnet(inputs, keep_prob, num_classes):
"""
# 適用於單導聯的深度網絡模型
:param inputs: keras tensor, 切片並堆疊後的單導聯信號.
:param keep_prob: float, dropout-隨機片段屏蔽概率.
:param num_classes: int, 目標類別數.
:return: keras tensor, 各類概率及全連接層前自動提取的特征.
"""
branches = []
for i in range(int(inputs.shape[-1])):
ld = Lambda(Net.__slice, output_shape=(int(inputs.shape[1]), 1), arguments={'index': i})(inputs)
ld = Reshape((int(inputs.shape[1]), 1))(ld)
bch = Net.__backbone(ld)
branches.append(bch)
features = Concatenate(axis=1)(branches)
features = Dropout(keep_prob, [1, int(inputs.shape[-1]), 1])(features)
features = Bidirectional(CuDNNLSTM(1, return_sequences=True), merge_mode='concat')(features)
features = Flatten()(features)
net = Dense(units=num_classes, activation='softmax')(features)
return net, features
示例3: lstm
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import CuDNNLSTM [as 別名]
def lstm(maxlen, embed_size, recurrent_units, dropout_rate, recurrent_dropout_rate, dense_size, nb_classes):
#inp = Input(shape=(maxlen, ))
input_layer = Input(shape=(maxlen, embed_size), )
#x = Embedding(max_features, embed_size, weights=[embedding_matrix],
# trainable=False)(inp)
x = LSTM(recurrent_units, return_sequences=True, dropout=dropout_rate,
recurrent_dropout=dropout_rate)(input_layer)
#x = CuDNNLSTM(recurrent_units, return_sequences=True)(x)
x = Dropout(dropout_rate)(x)
x_a = GlobalMaxPool1D()(x)
x_b = GlobalAveragePooling1D()(x)
#x_c = AttentionWeightedAverage()(x)
#x_a = MaxPooling1D(pool_size=2)(x)
#x_b = AveragePooling1D(pool_size=2)(x)
x = concatenate([x_a,x_b])
x = Dense(dense_size, activation="relu")(x)
x = Dropout(dropout_rate)(x)
x = Dense(nb_classes, activation="sigmoid")(x)
model = Model(inputs=input_layer, outputs=x)
model.summary()
model.compile(loss='binary_crossentropy',
optimizer='adam',
metrics=['accuracy'])
return model
# bidirectional LSTM
示例4: build_and_compile_model
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import CuDNNLSTM [as 別名]
def build_and_compile_model():
seq_input = Input(shape=(lookback_window, 1), name='seq_input', batch_shape=(1, lookback_window, 1))
x = CuDNNLSTM(LSTMunits, kernel_initializer='glorot_uniform', recurrent_initializer='glorot_uniform', return_sequences=True)(seq_input)
x = CuDNNLSTM(LSTMunits, kernel_initializer='glorot_uniform', recurrent_initializer='glorot_uniform', return_sequences=False)(x)
output_1 = Dense(1, activation='linear', name='output_1')(x)
weathernet = Model(inputs=seq_input, outputs=output_1)
weathernet.compile(optimizer=keras.optimizers.Adam(lr=1e-3), loss='mse')
weathernet.summary()
return weathernet
#Load existing model
示例5: build_and_compile_model
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import CuDNNLSTM [as 別名]
def build_and_compile_model():
seq_input = Input(shape=(lookback_window, 1), name='seq_input', batch_shape=(1, lookback_window, 1))
x = CuDNNLSTM(LSTMunits, kernel_initializer='glorot_uniform', recurrent_initializer='glorot_uniform', return_sequences=True)(seq_input)
x = CuDNNLSTM(LSTMunits, kernel_initializer='glorot_uniform', recurrent_initializer='glorot_uniform', return_sequences=False)(x)
output_1 = Dense(1, activation='linear', name='output_1')(x)
weathernet = Model(inputs=seq_input, outputs=output_1)
weathernet.compile(optimizer=keras.optimizers.Adam(lr=1e-3), loss='mse')
weathernet.summary()
return weathernet
# Predict
示例6: create_model
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import CuDNNLSTM [as 別名]
def create_model(self, hyper_parameters):
"""
構建神經網絡
:param hyper_parameters:json, hyper parameters of network
:return: tensor, moedl
"""
super().create_model(hyper_parameters)
x = self.word_embedding.output
# x = Reshape((self.len_max, self.embed_size, 1))(embedding)
if self.rnn_type=="LSTM":
layer_cell = LSTM
elif self.rnn_type=="GRU":
layer_cell = GRU
elif self.rnn_type=="CuDNNLSTM":
layer_cell = CuDNNLSTM
elif self.rnn_type=="CuDNNGRU":
layer_cell = CuDNNGRU
else:
layer_cell = GRU
# Bi-LSTM
for nrl in range(self.num_rnn_layers):
x = Bidirectional(layer_cell(units=self.rnn_units,
return_sequences=True,
activation='relu',
kernel_regularizer=regularizers.l2(0.32 * 0.1),
recurrent_regularizer=regularizers.l2(0.32)
))(x)
x = Dropout(self.dropout)(x)
x = Flatten()(x)
# 最後就是softmax
dense_layer = Dense(self.label, activation=self.activate_classify)(x)
output = [dense_layer]
self.model = Model(self.word_embedding.input, output)
self.model.summary(120)
示例7: create_model
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import CuDNNLSTM [as 別名]
def create_model(self, hyper_parameters):
"""
構建神經網絡
:param hyper_parameters:json, hyper parameters of network
:return: tensor, moedl
"""
super().create_model(hyper_parameters)
x = self.word_embedding.output
embedding_output_spatial = SpatialDropout1D(self.dropout_spatial)(x)
if self.rnn_units=="LSTM":
layer_cell = LSTM
elif self.rnn_units=="GRU":
layer_cell = GRU
elif self.rnn_units=="CuDNNLSTM":
layer_cell = CuDNNLSTM
elif self.rnn_units=="CuDNNGRU":
layer_cell = CuDNNGRU
else:
layer_cell = GRU
# CNN
convs = []
for kernel_size in self.filters:
conv = Conv1D(self.filters_num,
kernel_size=kernel_size,
strides=1,
padding='SAME',
kernel_regularizer=regularizers.l2(self.l2),
bias_regularizer=regularizers.l2(self.l2),
)(embedding_output_spatial)
convs.append(conv)
x = Concatenate(axis=1)(convs)
# Bi-LSTM, 論文中使用的是LSTM
x = Bidirectional(layer_cell(units=self.rnn_units,
return_sequences=True,
activation='relu',
kernel_regularizer=regularizers.l2(self.l2),
recurrent_regularizer=regularizers.l2(self.l2)
))(x)
x = Dropout(self.dropout)(x)
x = Flatten()(x)
# 最後就是softmax
dense_layer = Dense(self.label, activation=self.activate_classify)(x)
output = [dense_layer]
self.model = Model(self.word_embedding.input, output)
self.model.summary(120)
示例8: create_model
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import CuDNNLSTM [as 別名]
def create_model(self, hyper_parameters):
"""
構建神經網絡, a bit like RCNN, R
:param hyper_parameters:json, hyper parameters of network
:return: tensor, moedl
"""
super().create_model(hyper_parameters)
x = self.word_embedding.output
x = Activation('tanh')(x)
# entire embedding channels are dropped out instead of the
# normal Keras embedding dropout, which drops all channels for entire words
# many of the datasets contain so few words that losing one or more words can alter the emotions completely
x = SpatialDropout1D(self.dropout_spatial)(x)
if self.rnn_units=="LSTM":
layer_cell = LSTM
elif self.rnn_units=="GRU":
layer_cell = GRU
elif self.rnn_units=="CuDNNLSTM":
layer_cell = CuDNNLSTM
elif self.rnn_units=="CuDNNGRU":
layer_cell = CuDNNGRU
else:
layer_cell = GRU
# skip-connection from embedding to output eases gradient-flow and allows access to lower-level features
# ordering of the way the merge is done is important for consistency with the pretrained model
lstm_0_output = Bidirectional(layer_cell(units=self.rnn_units,
return_sequences=True,
activation='relu',
kernel_regularizer=regularizers.l2(self.l2),
recurrent_regularizer=regularizers.l2(self.l2)
), name="bi_lstm_0")(x)
lstm_1_output = Bidirectional(layer_cell(units=self.rnn_units,
return_sequences=True,
activation='relu',
kernel_regularizer=regularizers.l2(self.l2),
recurrent_regularizer=regularizers.l2(self.l2)
), name="bi_lstm_1")(lstm_0_output)
x = concatenate([lstm_1_output, lstm_0_output, x])
# if return_attention is True in AttentionWeightedAverage, an additional tensor
# representing the weight at each timestep is returned
weights = None
x = AttentionWeightedAverage(name='attlayer', return_attention=self.return_attention)(x)
if self.return_attention:
x, weights = x
x = Dropout(self.dropout)(x)
# x = Flatten()(x)
# 最後就是softmax
dense_layer = Dense(self.label, activation=self.activate_classify)(x)
output = [dense_layer]
self.model = Model(self.word_embedding.input, output)
self.model.summary(120)