本文整理匯總了Python中keras.layers.CuDNNGRU方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.CuDNNGRU方法的具體用法?Python layers.CuDNNGRU怎麽用?Python layers.CuDNNGRU使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類keras.layers
的用法示例。
在下文中一共展示了layers.CuDNNGRU方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: get_model
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import CuDNNGRU [as 別名]
def get_model(embedding_matrix, sequence_length, dropout_rate, recurrent_units, dense_size):
input_layer = Input(shape=(sequence_length,))
embedding_layer = Embedding(embedding_matrix.shape[0], embedding_matrix.shape[1],
weights=[embedding_matrix], trainable=False)(input_layer)
x = Bidirectional(CuDNNGRU(recurrent_units, return_sequences=True))(embedding_layer)
x = Dropout(dropout_rate)(x)
x = Bidirectional(CuDNNGRU(recurrent_units, return_sequences=False))(x)
x = Dense(dense_size, activation="relu")(x)
output_layer = Dense(6, activation="sigmoid")(x)
model = Model(inputs=input_layer, outputs=output_layer)
model.compile(loss='binary_crossentropy',
optimizer=RMSprop(clipvalue=1, clipnorm=1),
metrics=['accuracy'])
return model
示例2: create_model
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import CuDNNGRU [as 別名]
def create_model(self, hyper_parameters):
"""
構建神經網絡
:param hyper_parameters:json, hyper parameters of network
:return: tensor, moedl
"""
super().create_model(hyper_parameters)
x = self.word_embedding.output
# x = Reshape((self.len_max, self.embed_size, 1))(embedding)
if self.rnn_type=="LSTM":
layer_cell = LSTM
elif self.rnn_type=="GRU":
layer_cell = GRU
elif self.rnn_type=="CuDNNLSTM":
layer_cell = CuDNNLSTM
elif self.rnn_type=="CuDNNGRU":
layer_cell = CuDNNGRU
else:
layer_cell = GRU
# Bi-LSTM
for nrl in range(self.num_rnn_layers):
x = Bidirectional(layer_cell(units=self.rnn_units,
return_sequences=True,
activation='relu',
kernel_regularizer=regularizers.l2(0.32 * 0.1),
recurrent_regularizer=regularizers.l2(0.32)
))(x)
x = Dropout(self.dropout)(x)
x = Flatten()(x)
# 最後就是softmax
dense_layer = Dense(self.label, activation=self.activate_classify)(x)
output = [dense_layer]
self.model = Model(self.word_embedding.input, output)
self.model.summary(120)
示例3: Archi_3GRU16BI_1FC256
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import CuDNNGRU [as 別名]
def Archi_3GRU16BI_1FC256(X, nbclasses):
#-- get the input sizes
m, L, depth = X.shape
input_shape = (L,depth)
#-- parameters of the architecture
l2_rate = 1.e-6
dropout_rate = 0.5
nb_rnn = 3
nbunits_rnn = 16
nbunits_fc = 256
# Define the input placeholder.
X_input = Input(input_shape)
#-- nb_conv CONV layers
X = X_input
for add in range(nb_rnn-1):
X = Bidirectional(CuDNNGRU(nbunits_rnn, return_sequences=True))(X)
X = Dropout(dropout_rate)(X)
X = Bidirectional(CuDNNGRU(nbunits_rnn, return_sequences=False))(X)
X = Dropout(dropout_rate)(X)
#-- 1 FC layers
X = fc_bn_relu_drop(X, nbunits=nbunits_fc, kernel_regularizer=l2(l2_rate), dropout_rate=dropout_rate)
#-- SOFTMAX layer
out = softmax(X, nbclasses, kernel_regularizer=l2(l2_rate))
# Create model.
return Model(inputs = X_input, outputs = out, name='Archi_3GRU16BI_1FC256')
#-----------------------------------------------------------------------
示例4: Archi_3GRU32BI_1FC256
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import CuDNNGRU [as 別名]
def Archi_3GRU32BI_1FC256(X, nbclasses):
#-- get the input sizes
m, L, depth = X.shape
input_shape = (L,depth)
#-- parameters of the architecture
l2_rate = 1.e-6
dropout_rate = 0.5
#~ dropout_rate = 0.5
nb_rnn = 3
nbunits_rnn = 32
nbunits_fc = 256
# Define the input placeholder.
X_input = Input(input_shape)
#-- nb_conv CONV layers
X = X_input
for add in range(nb_rnn-1):
X = Bidirectional(CuDNNGRU(nbunits_rnn, return_sequences=True))(X)
X = Dropout(dropout_rate)(X)
X = Bidirectional(CuDNNGRU(nbunits_rnn, return_sequences=False))(X)
X = Dropout(dropout_rate)(X)
#-- 1 FC layers
X = fc_bn_relu_drop(X, nbunits=nbunits_fc, kernel_regularizer=l2(l2_rate), dropout_rate=dropout_rate)
#-- SOFTMAX layer
out = softmax(X, nbclasses, kernel_regularizer=l2(l2_rate))
# Create model.
return Model(inputs = X_input, outputs = out, name='Archi_3GRU32BI_1FC256')
#-----------------------------------------------------------------------
示例5: Archi_3GRU64BI_1FC256
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import CuDNNGRU [as 別名]
def Archi_3GRU64BI_1FC256(X, nbclasses):
#-- get the input sizes
m, L, depth = X.shape
input_shape = (L,depth)
#-- parameters of the architecture
l2_rate = 1.e-6
dropout_rate = 0.5
nb_rnn = 3
nbunits_rnn = 64
nbunits_fc = 256
# Define the input placeholder.
X_input = Input(input_shape)
#-- nb_conv CONV layers
X = X_input
for add in range(nb_rnn-1):
X = Bidirectional(CuDNNGRU(nbunits_rnn, return_sequences=True))(X)
X = Dropout(dropout_rate)(X)
X = Bidirectional(CuDNNGRU(nbunits_rnn, return_sequences=False))(X)
X = Dropout(dropout_rate)(X)
#-- 1 FC layers
X = fc_bn_relu_drop(X, nbunits=nbunits_fc, kernel_regularizer=l2(l2_rate), dropout_rate=dropout_rate)
#-- SOFTMAX layer
out = softmax(X, nbclasses, kernel_regularizer=l2(l2_rate))
# Create model.
return Model(inputs = X_input, outputs = out, name='Archi_3GRU64BI_1FC256')
#-----------------------------------------------------------------------
示例6: Archi_3GRU128BI_1FC256
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import CuDNNGRU [as 別名]
def Archi_3GRU128BI_1FC256(X, nbclasses):
#-- get the input sizes
m, L, depth = X.shape
input_shape = (L,depth)
#-- parameters of the architecture
l2_rate = 1.e-6
dropout_rate = 0.5
nb_rnn = 3
nbunits_rnn = 128
nbunits_fc = 256
# Define the input placeholder.
X_input = Input(input_shape)
#-- nb_conv CONV layers
X = X_input
for add in range(nb_rnn-1):
X = Bidirectional(CuDNNGRU(nbunits_rnn, return_sequences=True))(X)
X = Dropout(dropout_rate)(X)
X = Bidirectional(CuDNNGRU(nbunits_rnn, return_sequences=False))(X)
X = Dropout(dropout_rate)(X)
#-- 1 FC layers
X = fc_bn_relu_drop(X, nbunits=nbunits_fc, kernel_regularizer=l2(l2_rate), dropout_rate=dropout_rate)
#-- SOFTMAX layer
out = softmax(X, nbclasses, kernel_regularizer=l2(l2_rate))
# Create model.
return Model(inputs = X_input, outputs = out, name='Archi_3GRU128BI_1FC256')
#-----------------------------------------------------------------------
示例7: Archi_3GRU256BI_1FC256
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import CuDNNGRU [as 別名]
def Archi_3GRU256BI_1FC256(X, nbclasses):
#-- get the input sizes
m, L, depth = X.shape
input_shape = (L,depth)
#-- parameters of the architecture
l2_rate = 1.e-6
dropout_rate = 0.5
nb_rnn = 3
nbunits_rnn = 256
nbunits_fc = 256
# Define the input placeholder.
X_input = Input(input_shape)
#-- nb_conv CONV layers
X = X_input
for add in range(nb_rnn-1):
X = Bidirectional(CuDNNGRU(nbunits_rnn, return_sequences=True))(X)
X = Dropout(dropout_rate)(X)
X = Bidirectional(CuDNNGRU(nbunits_rnn, return_sequences=False))(X)
X = Dropout(dropout_rate)(X)
#-- 1 FC layers
X = fc_bn_relu_drop(X, nbunits=nbunits_fc, kernel_regularizer=l2(l2_rate), dropout_rate=dropout_rate)
#-- SOFTMAX layer
out = softmax(X, nbclasses, kernel_regularizer=l2(l2_rate))
# Create model.
return Model(inputs = X_input, outputs = out, name='Archi_3GRU256BI_1FC256')
#--------------------- Switcher for running the architectures
示例8: create_model
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import CuDNNGRU [as 別名]
def create_model(self):
dat_input = Input(shape=(self.tdatlen,))
com_input = Input(shape=(self.comlen,))
sml_input = Input(shape=(self.smllen,))
ee = Embedding(output_dim=self.embdims, input_dim=self.tdatvocabsize, mask_zero=False)(dat_input)
se = Embedding(output_dim=self.smldims, input_dim=self.smlvocabsize, mask_zero=False)(sml_input)
se_enc = CuDNNGRU(self.recdims, return_state=True, return_sequences=True)
seout, state_sml = se_enc(se)
enc = CuDNNGRU(self.recdims, return_state=True, return_sequences=True)
encout, state_h = enc(ee, initial_state=state_sml)
de = Embedding(output_dim=self.embdims, input_dim=self.comvocabsize, mask_zero=False)(com_input)
dec = CuDNNGRU(self.recdims, return_sequences=True)
decout = dec(de, initial_state=state_h)
attn = dot([decout, encout], axes=[2, 2])
attn = Activation('softmax')(attn)
context = dot([attn, encout], axes=[2, 1])
ast_attn = dot([decout, seout], axes=[2, 2])
ast_attn = Activation('softmax')(ast_attn)
ast_context = dot([ast_attn, seout], axes=[2, 1])
context = concatenate([context, decout, ast_context])
out = TimeDistributed(Dense(self.recdims, activation="relu"))(context)
out = Flatten()(out)
out = Dense(self.comvocabsize, activation="softmax")(out)
model = Model(inputs=[dat_input, com_input, sml_input], outputs=out)
if self.config['multigpu']:
model = keras.utils.multi_gpu_model(model, gpus=2)
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
return self.config, model
示例9: CNN_BIGRU
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import CuDNNGRU [as 別名]
def CNN_BIGRU():
# Inp is one-hot encoded version of inp_alt
inp = Input(shape=(maxlen_seq, n_words))
inp_alt = Input(shape=(maxlen_seq,))
inp_profiles = Input(shape=(maxlen_seq, 22))
# Concatenate embedded and unembedded input
x_emb = Embedding(input_dim=n_words, output_dim=64,
input_length=maxlen_seq)(inp_alt)
x = Concatenate(axis=-1)([inp, x_emb, inp_profiles])
x = super_conv_block(x)
x = conv_block(x)
x = super_conv_block(x)
x = conv_block(x)
x = super_conv_block(x)
x = conv_block(x)
x = Bidirectional(CuDNNGRU(units = 256, return_sequences = True, recurrent_regularizer=l2(0.2)))(x)
x = TimeDistributed(Dropout(0.5))(x)
x = TimeDistributed(Dense(256, activation = "relu"))(x)
x = TimeDistributed(Dropout(0.5))(x)
y = TimeDistributed(Dense(n_tags, activation = "softmax"))(x)
model = Model([inp, inp_alt, inp_profiles], y)
return model
示例10: build_model
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import CuDNNGRU [as 別名]
def build_model():
input = Input(shape = (None, ))
profiles_input = Input(shape = (None, 22))
# Defining an embedding layer mapping from the words (n_words) to a vector of len 128
x1 = Embedding(input_dim = n_words, output_dim = 250, input_length = None)(input)
x1 = concatenate([x1, profiles_input], axis = 2)
x2 = Embedding(input_dim = n_words, output_dim = 125, input_length = None)(input)
x2 = concatenate([x2, profiles_input], axis = 2)
x1 = Dense(1200, activation = "relu")(x1)
x1 = Dropout(0.5)(x1)
# Defining a bidirectional LSTM using the embedded representation of the inputs
x2 = Bidirectional(CuDNNGRU(units = 500, return_sequences = True))(x2)
x2 = Bidirectional(CuDNNGRU(units = 100, return_sequences = True))(x2)
COMBO_MOVE = concatenate([x1, x2])
w = Dense(500, activation = "relu")(COMBO_MOVE) # try 500
w = Dropout(0.4)(w)
w = tcn.TCN()(w)
y = TimeDistributed(Dense(n_tags, activation = "softmax"))(w)
# Defining the model as a whole and printing the summary
model = Model([input, profiles_input], y)
#model.summary()
# Setting up the model with categorical x-entropy loss and the custom accuracy function as accuracy
adamOptimizer = Adam(lr=0.0025, beta_1=0.8, beta_2=0.8, epsilon=None, decay=0.0001, amsgrad=False)
model.compile(optimizer = adamOptimizer, loss = "categorical_crossentropy", metrics = ["accuracy", accuracy])
return model
# Defining the decoders so that we can
示例11: create_model
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import CuDNNGRU [as 別名]
def create_model(self, hyper_parameters):
"""
構建神經網絡
:param hyper_parameters:json, hyper parameters of network
:return: tensor, moedl
"""
super().create_model(hyper_parameters)
x = self.word_embedding.output
embedding_output_spatial = SpatialDropout1D(self.dropout_spatial)(x)
if self.rnn_units=="LSTM":
layer_cell = LSTM
elif self.rnn_units=="GRU":
layer_cell = GRU
elif self.rnn_units=="CuDNNLSTM":
layer_cell = CuDNNLSTM
elif self.rnn_units=="CuDNNGRU":
layer_cell = CuDNNGRU
else:
layer_cell = GRU
# CNN
convs = []
for kernel_size in self.filters:
conv = Conv1D(self.filters_num,
kernel_size=kernel_size,
strides=1,
padding='SAME',
kernel_regularizer=regularizers.l2(self.l2),
bias_regularizer=regularizers.l2(self.l2),
)(embedding_output_spatial)
convs.append(conv)
x = Concatenate(axis=1)(convs)
# Bi-LSTM, 論文中使用的是LSTM
x = Bidirectional(layer_cell(units=self.rnn_units,
return_sequences=True,
activation='relu',
kernel_regularizer=regularizers.l2(self.l2),
recurrent_regularizer=regularizers.l2(self.l2)
))(x)
x = Dropout(self.dropout)(x)
x = Flatten()(x)
# 最後就是softmax
dense_layer = Dense(self.label, activation=self.activate_classify)(x)
output = [dense_layer]
self.model = Model(self.word_embedding.input, output)
self.model.summary(120)
示例12: create_model
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import CuDNNGRU [as 別名]
def create_model(self, hyper_parameters):
"""
構建神經網絡, a bit like RCNN, R
:param hyper_parameters:json, hyper parameters of network
:return: tensor, moedl
"""
super().create_model(hyper_parameters)
x = self.word_embedding.output
x = Activation('tanh')(x)
# entire embedding channels are dropped out instead of the
# normal Keras embedding dropout, which drops all channels for entire words
# many of the datasets contain so few words that losing one or more words can alter the emotions completely
x = SpatialDropout1D(self.dropout_spatial)(x)
if self.rnn_units=="LSTM":
layer_cell = LSTM
elif self.rnn_units=="GRU":
layer_cell = GRU
elif self.rnn_units=="CuDNNLSTM":
layer_cell = CuDNNLSTM
elif self.rnn_units=="CuDNNGRU":
layer_cell = CuDNNGRU
else:
layer_cell = GRU
# skip-connection from embedding to output eases gradient-flow and allows access to lower-level features
# ordering of the way the merge is done is important for consistency with the pretrained model
lstm_0_output = Bidirectional(layer_cell(units=self.rnn_units,
return_sequences=True,
activation='relu',
kernel_regularizer=regularizers.l2(self.l2),
recurrent_regularizer=regularizers.l2(self.l2)
), name="bi_lstm_0")(x)
lstm_1_output = Bidirectional(layer_cell(units=self.rnn_units,
return_sequences=True,
activation='relu',
kernel_regularizer=regularizers.l2(self.l2),
recurrent_regularizer=regularizers.l2(self.l2)
), name="bi_lstm_1")(lstm_0_output)
x = concatenate([lstm_1_output, lstm_0_output, x])
# if return_attention is True in AttentionWeightedAverage, an additional tensor
# representing the weight at each timestep is returned
weights = None
x = AttentionWeightedAverage(name='attlayer', return_attention=self.return_attention)(x)
if self.return_attention:
x, weights = x
x = Dropout(self.dropout)(x)
# x = Flatten()(x)
# 最後就是softmax
dense_layer = Dense(self.label, activation=self.activate_classify)(x)
output = [dense_layer]
self.model = Model(self.word_embedding.input, output)
self.model.summary(120)