當前位置: 首頁>>代碼示例>>Python>>正文


Python layers.CuDNNGRU方法代碼示例

本文整理匯總了Python中keras.layers.CuDNNGRU方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.CuDNNGRU方法的具體用法?Python layers.CuDNNGRU怎麽用?Python layers.CuDNNGRU使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.layers的用法示例。


在下文中一共展示了layers.CuDNNGRU方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_model

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import CuDNNGRU [as 別名]
def get_model(embedding_matrix, sequence_length, dropout_rate, recurrent_units, dense_size):
    input_layer = Input(shape=(sequence_length,))
    embedding_layer = Embedding(embedding_matrix.shape[0], embedding_matrix.shape[1],
                                weights=[embedding_matrix], trainable=False)(input_layer)
    x = Bidirectional(CuDNNGRU(recurrent_units, return_sequences=True))(embedding_layer)
    x = Dropout(dropout_rate)(x)
    x = Bidirectional(CuDNNGRU(recurrent_units, return_sequences=False))(x)
    x = Dense(dense_size, activation="relu")(x)
    output_layer = Dense(6, activation="sigmoid")(x)

    model = Model(inputs=input_layer, outputs=output_layer)
    model.compile(loss='binary_crossentropy',
                  optimizer=RMSprop(clipvalue=1, clipnorm=1),
                  metrics=['accuracy'])

    return model 
開發者ID:PavelOstyakov,項目名稱:toxic,代碼行數:18,代碼來源:model.py

示例2: create_model

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import CuDNNGRU [as 別名]
def create_model(self, hyper_parameters):
        """
            構建神經網絡
        :param hyper_parameters:json,  hyper parameters of network
        :return: tensor, moedl
        """
        super().create_model(hyper_parameters)
        x = self.word_embedding.output
        # x = Reshape((self.len_max, self.embed_size, 1))(embedding)
        if self.rnn_type=="LSTM":
                layer_cell = LSTM
        elif self.rnn_type=="GRU":
                layer_cell = GRU
        elif self.rnn_type=="CuDNNLSTM":
                layer_cell = CuDNNLSTM
        elif self.rnn_type=="CuDNNGRU":
                layer_cell = CuDNNGRU
        else:
            layer_cell = GRU

        # Bi-LSTM
        for nrl in range(self.num_rnn_layers):
            x = Bidirectional(layer_cell(units=self.rnn_units,
                                         return_sequences=True,
                                         activation='relu',
                                         kernel_regularizer=regularizers.l2(0.32 * 0.1),
                                         recurrent_regularizer=regularizers.l2(0.32)
                                         ))(x)
            x = Dropout(self.dropout)(x)
        x = Flatten()(x)
        # 最後就是softmax
        dense_layer = Dense(self.label, activation=self.activate_classify)(x)
        output = [dense_layer]
        self.model = Model(self.word_embedding.input, output)
        self.model.summary(120) 
開發者ID:yongzhuo,項目名稱:Keras-TextClassification,代碼行數:37,代碼來源:graph.py

示例3: Archi_3GRU16BI_1FC256

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import CuDNNGRU [as 別名]
def Archi_3GRU16BI_1FC256(X, nbclasses):
	
	#-- get the input sizes
	m, L, depth = X.shape
	input_shape = (L,depth)
	
	#-- parameters of the architecture
	l2_rate = 1.e-6
	dropout_rate = 0.5
	nb_rnn = 3
	nbunits_rnn = 16
	nbunits_fc = 256
	
	# Define the input placeholder.
	X_input = Input(input_shape)
		
	#-- nb_conv CONV layers
	X = X_input
	for add in range(nb_rnn-1):
		X = Bidirectional(CuDNNGRU(nbunits_rnn, return_sequences=True))(X)
		X = Dropout(dropout_rate)(X)
	X = Bidirectional(CuDNNGRU(nbunits_rnn, return_sequences=False))(X)
	X = Dropout(dropout_rate)(X)
	#-- 1 FC layers
	X = fc_bn_relu_drop(X, nbunits=nbunits_fc, kernel_regularizer=l2(l2_rate), dropout_rate=dropout_rate)
		
	#-- SOFTMAX layer
	out = softmax(X, nbclasses, kernel_regularizer=l2(l2_rate))
		
	# Create model.
	return Model(inputs = X_input, outputs = out, name='Archi_3GRU16BI_1FC256')
	
#----------------------------------------------------------------------- 
開發者ID:charlotte-pel,項目名稱:temporalCNN,代碼行數:35,代碼來源:architecture_rnn.py

示例4: Archi_3GRU32BI_1FC256

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import CuDNNGRU [as 別名]
def Archi_3GRU32BI_1FC256(X, nbclasses):
	
	#-- get the input sizes
	m, L, depth = X.shape
	input_shape = (L,depth)
	
	#-- parameters of the architecture
	l2_rate = 1.e-6
	dropout_rate = 0.5
	#~ dropout_rate = 0.5
	nb_rnn = 3
	nbunits_rnn = 32
	nbunits_fc = 256
	
	# Define the input placeholder.
	X_input = Input(input_shape)
		
	#-- nb_conv CONV layers
	X = X_input
	for add in range(nb_rnn-1):
		X = Bidirectional(CuDNNGRU(nbunits_rnn, return_sequences=True))(X)
		X = Dropout(dropout_rate)(X)
	X = Bidirectional(CuDNNGRU(nbunits_rnn, return_sequences=False))(X)
	X = Dropout(dropout_rate)(X)
	#-- 1 FC layers
	X = fc_bn_relu_drop(X, nbunits=nbunits_fc, kernel_regularizer=l2(l2_rate), dropout_rate=dropout_rate)
		
	#-- SOFTMAX layer
	out = softmax(X, nbclasses, kernel_regularizer=l2(l2_rate))
		
	# Create model.
	return Model(inputs = X_input, outputs = out, name='Archi_3GRU32BI_1FC256')

#----------------------------------------------------------------------- 
開發者ID:charlotte-pel,項目名稱:temporalCNN,代碼行數:36,代碼來源:architecture_rnn.py

示例5: Archi_3GRU64BI_1FC256

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import CuDNNGRU [as 別名]
def Archi_3GRU64BI_1FC256(X, nbclasses):
	
	#-- get the input sizes
	m, L, depth = X.shape
	input_shape = (L,depth)
	
	#-- parameters of the architecture
	l2_rate = 1.e-6
	dropout_rate = 0.5
	nb_rnn = 3
	nbunits_rnn = 64
	nbunits_fc = 256
	
	# Define the input placeholder.
	X_input = Input(input_shape)
		
	#-- nb_conv CONV layers
	X = X_input
	for add in range(nb_rnn-1):
		X = Bidirectional(CuDNNGRU(nbunits_rnn, return_sequences=True))(X)
		X = Dropout(dropout_rate)(X)
	X = Bidirectional(CuDNNGRU(nbunits_rnn, return_sequences=False))(X)
	X = Dropout(dropout_rate)(X)
	#-- 1 FC layers
	X = fc_bn_relu_drop(X, nbunits=nbunits_fc, kernel_regularizer=l2(l2_rate), dropout_rate=dropout_rate)
		
	#-- SOFTMAX layer
	out = softmax(X, nbclasses, kernel_regularizer=l2(l2_rate))
		
	# Create model.
	return Model(inputs = X_input, outputs = out, name='Archi_3GRU64BI_1FC256')

	
#----------------------------------------------------------------------- 
開發者ID:charlotte-pel,項目名稱:temporalCNN,代碼行數:36,代碼來源:architecture_rnn.py

示例6: Archi_3GRU128BI_1FC256

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import CuDNNGRU [as 別名]
def Archi_3GRU128BI_1FC256(X, nbclasses):
	
	#-- get the input sizes
	m, L, depth = X.shape
	input_shape = (L,depth)
	
	#-- parameters of the architecture
	l2_rate = 1.e-6
	dropout_rate = 0.5
	nb_rnn = 3
	nbunits_rnn = 128
	nbunits_fc = 256
	
	# Define the input placeholder.
	X_input = Input(input_shape)
		
	#-- nb_conv CONV layers
	X = X_input
	for add in range(nb_rnn-1):
		X = Bidirectional(CuDNNGRU(nbunits_rnn, return_sequences=True))(X)
		X = Dropout(dropout_rate)(X)
	X = Bidirectional(CuDNNGRU(nbunits_rnn, return_sequences=False))(X)
	X = Dropout(dropout_rate)(X)
	#-- 1 FC layers
	X = fc_bn_relu_drop(X, nbunits=nbunits_fc, kernel_regularizer=l2(l2_rate), dropout_rate=dropout_rate)
		
	#-- SOFTMAX layer
	out = softmax(X, nbclasses, kernel_regularizer=l2(l2_rate))
		
	# Create model.
	return Model(inputs = X_input, outputs = out, name='Archi_3GRU128BI_1FC256')

		
#----------------------------------------------------------------------- 
開發者ID:charlotte-pel,項目名稱:temporalCNN,代碼行數:36,代碼來源:architecture_rnn.py

示例7: Archi_3GRU256BI_1FC256

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import CuDNNGRU [as 別名]
def Archi_3GRU256BI_1FC256(X, nbclasses):
	
	#-- get the input sizes
	m, L, depth = X.shape
	input_shape = (L,depth)
	
	#-- parameters of the architecture
	l2_rate = 1.e-6
	dropout_rate = 0.5
	nb_rnn = 3
	nbunits_rnn = 256
	nbunits_fc = 256
	
	# Define the input placeholder.
	X_input = Input(input_shape)
		
	#-- nb_conv CONV layers
	X = X_input
	for add in range(nb_rnn-1):
		X = Bidirectional(CuDNNGRU(nbunits_rnn, return_sequences=True))(X)
		X = Dropout(dropout_rate)(X)
	X = Bidirectional(CuDNNGRU(nbunits_rnn, return_sequences=False))(X)
	X = Dropout(dropout_rate)(X)
	#-- 1 FC layers
	X = fc_bn_relu_drop(X, nbunits=nbunits_fc, kernel_regularizer=l2(l2_rate), dropout_rate=dropout_rate)
		
	#-- SOFTMAX layer
	out = softmax(X, nbclasses, kernel_regularizer=l2(l2_rate))
		
	# Create model.
	return Model(inputs = X_input, outputs = out, name='Archi_3GRU256BI_1FC256')	

#--------------------- Switcher for running the architectures 
開發者ID:charlotte-pel,項目名稱:temporalCNN,代碼行數:35,代碼來源:architecture_rnn.py

示例8: create_model

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import CuDNNGRU [as 別名]
def create_model(self):
        
        dat_input = Input(shape=(self.tdatlen,))
        com_input = Input(shape=(self.comlen,))
        sml_input = Input(shape=(self.smllen,))
        
        ee = Embedding(output_dim=self.embdims, input_dim=self.tdatvocabsize, mask_zero=False)(dat_input)
        se = Embedding(output_dim=self.smldims, input_dim=self.smlvocabsize, mask_zero=False)(sml_input)

        se_enc = CuDNNGRU(self.recdims, return_state=True, return_sequences=True)
        seout, state_sml = se_enc(se)

        enc = CuDNNGRU(self.recdims, return_state=True, return_sequences=True)
        encout, state_h = enc(ee, initial_state=state_sml)
        
        de = Embedding(output_dim=self.embdims, input_dim=self.comvocabsize, mask_zero=False)(com_input)
        dec = CuDNNGRU(self.recdims, return_sequences=True)
        decout = dec(de, initial_state=state_h)

        attn = dot([decout, encout], axes=[2, 2])
        attn = Activation('softmax')(attn)
        context = dot([attn, encout], axes=[2, 1])

        ast_attn = dot([decout, seout], axes=[2, 2])
        ast_attn = Activation('softmax')(ast_attn)
        ast_context = dot([ast_attn, seout], axes=[2, 1])

        context = concatenate([context, decout, ast_context])

        out = TimeDistributed(Dense(self.recdims, activation="relu"))(context)

        out = Flatten()(out)
        out = Dense(self.comvocabsize, activation="softmax")(out)
        
        model = Model(inputs=[dat_input, com_input, sml_input], outputs=out)

        if self.config['multigpu']:
            model = keras.utils.multi_gpu_model(model, gpus=2)
        
        model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
        return self.config, model 
開發者ID:mcmillco,項目名稱:funcom,代碼行數:43,代碼來源:ast_attendgru_xtra.py

示例9: CNN_BIGRU

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import CuDNNGRU [as 別名]
def CNN_BIGRU():
    # Inp is one-hot encoded version of inp_alt
    inp          = Input(shape=(maxlen_seq, n_words))
    inp_alt      = Input(shape=(maxlen_seq,))
    inp_profiles = Input(shape=(maxlen_seq, 22))

    # Concatenate embedded and unembedded input
    x_emb = Embedding(input_dim=n_words, output_dim=64, 
                      input_length=maxlen_seq)(inp_alt)
    x = Concatenate(axis=-1)([inp, x_emb, inp_profiles])

    x = super_conv_block(x)
    x = conv_block(x)
    x = super_conv_block(x)
    x = conv_block(x)
    x = super_conv_block(x)
    x = conv_block(x)

    x = Bidirectional(CuDNNGRU(units = 256, return_sequences = True, recurrent_regularizer=l2(0.2)))(x)
    x = TimeDistributed(Dropout(0.5))(x)
    x = TimeDistributed(Dense(256, activation = "relu"))(x)
    x = TimeDistributed(Dropout(0.5))(x)
    
    y = TimeDistributed(Dense(n_tags, activation = "softmax"))(x)
    
    model = Model([inp, inp_alt, inp_profiles], y)
    
    return model 
開發者ID:idrori,項目名稱:cu-ssp,代碼行數:30,代碼來源:model_1.py

示例10: build_model

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import CuDNNGRU [as 別名]
def build_model():
  input = Input(shape = (None, ))
  profiles_input = Input(shape = (None, 22))

  # Defining an embedding layer mapping from the words (n_words) to a vector of len 128
  x1 = Embedding(input_dim = n_words, output_dim = 250, input_length = None)(input)  
  x1 = concatenate([x1, profiles_input], axis = 2)
  
  x2 = Embedding(input_dim = n_words, output_dim = 125, input_length = None)(input)
  x2 = concatenate([x2, profiles_input], axis = 2)

  x1 = Dense(1200, activation = "relu")(x1)
  x1 = Dropout(0.5)(x1)

  # Defining a bidirectional LSTM using the embedded representation of the inputs
  x2 = Bidirectional(CuDNNGRU(units = 500, return_sequences = True))(x2)
  x2 = Bidirectional(CuDNNGRU(units = 100, return_sequences = True))(x2)
  COMBO_MOVE = concatenate([x1, x2])
  w = Dense(500, activation = "relu")(COMBO_MOVE) # try 500
  w = Dropout(0.4)(w)
  w = tcn.TCN()(w)
  y = TimeDistributed(Dense(n_tags, activation = "softmax"))(w)

  # Defining the model as a whole and printing the summary
  model = Model([input, profiles_input], y)
  #model.summary()

  # Setting up the model with categorical x-entropy loss and the custom accuracy function as accuracy
  adamOptimizer = Adam(lr=0.0025, beta_1=0.8, beta_2=0.8, epsilon=None, decay=0.0001, amsgrad=False) 
  model.compile(optimizer = adamOptimizer, loss = "categorical_crossentropy", metrics = ["accuracy", accuracy])
  return model


# Defining the decoders so that we can 
開發者ID:idrori,項目名稱:cu-ssp,代碼行數:36,代碼來源:model_3.py

示例11: create_model

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import CuDNNGRU [as 別名]
def create_model(self, hyper_parameters):
        """
            構建神經網絡
        :param hyper_parameters:json,  hyper parameters of network
        :return: tensor, moedl
        """
        super().create_model(hyper_parameters)
        x = self.word_embedding.output
        embedding_output_spatial = SpatialDropout1D(self.dropout_spatial)(x)

        if self.rnn_units=="LSTM":
                layer_cell = LSTM
        elif self.rnn_units=="GRU":
                layer_cell = GRU
        elif self.rnn_units=="CuDNNLSTM":
                layer_cell = CuDNNLSTM
        elif self.rnn_units=="CuDNNGRU":
                layer_cell = CuDNNGRU
        else:
            layer_cell = GRU
        # CNN
        convs = []
        for kernel_size in self.filters:
            conv = Conv1D(self.filters_num,
                            kernel_size=kernel_size,
                            strides=1,
                            padding='SAME',
                            kernel_regularizer=regularizers.l2(self.l2),
                            bias_regularizer=regularizers.l2(self.l2),
                            )(embedding_output_spatial)
            convs.append(conv)
        x = Concatenate(axis=1)(convs)
        # Bi-LSTM, 論文中使用的是LSTM
        x = Bidirectional(layer_cell(units=self.rnn_units,
                                     return_sequences=True,
                                     activation='relu',
                                     kernel_regularizer=regularizers.l2(self.l2),
                                     recurrent_regularizer=regularizers.l2(self.l2)
                                     ))(x)
        x = Dropout(self.dropout)(x)
        x = Flatten()(x)
        # 最後就是softmax
        dense_layer = Dense(self.label, activation=self.activate_classify)(x)
        output = [dense_layer]
        self.model = Model(self.word_embedding.input, output)
        self.model.summary(120) 
開發者ID:yongzhuo,項目名稱:Keras-TextClassification,代碼行數:48,代碼來源:graph.py

示例12: create_model

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import CuDNNGRU [as 別名]
def create_model(self, hyper_parameters):
        """
            構建神經網絡, a bit like RCNN, R
        :param hyper_parameters:json,  hyper parameters of network
        :return: tensor, moedl
        """
        super().create_model(hyper_parameters)
        x = self.word_embedding.output
        x = Activation('tanh')(x)

        # entire embedding channels are dropped out instead of the
        # normal Keras embedding dropout, which drops all channels for entire words
        # many of the datasets contain so few words that losing one or more words can alter the emotions completely
        x = SpatialDropout1D(self.dropout_spatial)(x)

        if self.rnn_units=="LSTM":
                layer_cell = LSTM
        elif self.rnn_units=="GRU":
                layer_cell = GRU
        elif self.rnn_units=="CuDNNLSTM":
                layer_cell = CuDNNLSTM
        elif self.rnn_units=="CuDNNGRU":
                layer_cell = CuDNNGRU
        else:
            layer_cell = GRU


        # skip-connection from embedding to output eases gradient-flow and allows access to lower-level features
        # ordering of the way the merge is done is important for consistency with the pretrained model
        lstm_0_output = Bidirectional(layer_cell(units=self.rnn_units,
                                                 return_sequences=True,
                                                 activation='relu',
                                                 kernel_regularizer=regularizers.l2(self.l2),
                                                 recurrent_regularizer=regularizers.l2(self.l2)
                                                 ), name="bi_lstm_0")(x)
        lstm_1_output = Bidirectional(layer_cell(units=self.rnn_units,
                                                 return_sequences=True,
                                                 activation='relu',
                                                 kernel_regularizer=regularizers.l2(self.l2),
                                                 recurrent_regularizer=regularizers.l2(self.l2)
                                                 ), name="bi_lstm_1")(lstm_0_output)
        x = concatenate([lstm_1_output, lstm_0_output, x])

        # if return_attention is True in AttentionWeightedAverage, an additional tensor
        # representing the weight at each timestep is returned
        weights = None
        x = AttentionWeightedAverage(name='attlayer', return_attention=self.return_attention)(x)
        if self.return_attention:
            x, weights = x

        x = Dropout(self.dropout)(x)
        # x = Flatten()(x)
        # 最後就是softmax
        dense_layer = Dense(self.label, activation=self.activate_classify)(x)
        output = [dense_layer]
        self.model = Model(self.word_embedding.input, output)
        self.model.summary(120) 
開發者ID:yongzhuo,項目名稱:Keras-TextClassification,代碼行數:59,代碼來源:graph.py


注:本文中的keras.layers.CuDNNGRU方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。