本文整理匯總了Python中keras.layers.Convolution2D方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.Convolution2D方法的具體用法?Python layers.Convolution2D怎麽用?Python layers.Convolution2D使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類keras.layers
的用法示例。
在下文中一共展示了layers.Convolution2D方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: modelB
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Convolution2D [as 別名]
def modelB():
model = Sequential()
model.add(Dropout(0.2, input_shape=(FLAGS.IMAGE_ROWS,
FLAGS.IMAGE_COLS,
FLAGS.NUM_CHANNELS)))
model.add(Convolution2D(64, 8, 8,
subsample=(2, 2),
border_mode='same'))
model.add(Activation('relu'))
model.add(Convolution2D(128, 6, 6,
subsample=(2, 2),
border_mode='valid'))
model.add(Activation('relu'))
model.add(Convolution2D(128, 5, 5,
subsample=(1, 1)))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Flatten())
model.add(Dense(FLAGS.NUM_CLASSES))
return model
示例2: modelC
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Convolution2D [as 別名]
def modelC():
model = Sequential()
model.add(Convolution2D(128, 3, 3,
border_mode='valid',
input_shape=(FLAGS.IMAGE_ROWS,
FLAGS.IMAGE_COLS,
FLAGS.NUM_CHANNELS)))
model.add(Activation('relu'))
model.add(Convolution2D(64, 3, 3))
model.add(Activation('relu'))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(FLAGS.NUM_CLASSES))
return model
示例3: modelF
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Convolution2D [as 別名]
def modelF():
model = Sequential()
model.add(Convolution2D(32, 3, 3,
border_mode='valid',
input_shape=(FLAGS.IMAGE_ROWS,
FLAGS.IMAGE_COLS,
FLAGS.NUM_CHANNELS)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Convolution2D(64, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(1024))
model.add(Activation('relu'))
model.add(Dense(FLAGS.NUM_CLASSES))
return model
示例4: value_distribution_network
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Convolution2D [as 別名]
def value_distribution_network(input_shape, num_atoms, action_size, learning_rate):
"""Model Value Distribution
With States as inputs and output Probability Distributions for all Actions
"""
state_input = Input(shape=(input_shape))
cnn_feature = Convolution2D(32, 8, 8, subsample=(4,4), activation='relu')(state_input)
cnn_feature = Convolution2D(64, 4, 4, subsample=(2,2), activation='relu')(cnn_feature)
cnn_feature = Convolution2D(64, 3, 3, activation='relu')(cnn_feature)
cnn_feature = Flatten()(cnn_feature)
cnn_feature = Dense(512, activation='relu')(cnn_feature)
distribution_list = []
for i in range(action_size):
distribution_list.append(Dense(num_atoms, activation='softmax')(cnn_feature))
model = Model(input=state_input, output=distribution_list)
adam = Adam(lr=learning_rate)
model.compile(loss='categorical_crossentropy',optimizer=adam)
return model
示例5: conv2d_bn
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Convolution2D [as 別名]
def conv2d_bn(x, nb_filter, nb_row, nb_col,
border_mode='same', subsample=(1, 1),
name=None):
'''Utility function to apply conv + BN.
'''
if name is not None:
bn_name = name + '_bn'
conv_name = name + '_conv'
else:
bn_name = None
conv_name = None
if K.image_dim_ordering() == 'th':
bn_axis = 1
else:
bn_axis = 3
x = Convolution2D(nb_filter, nb_row, nb_col,
subsample=subsample,
activation='relu',
border_mode=border_mode,
name=conv_name)(x)
x = BatchNormalization(axis=bn_axis, name=bn_name)(x)
return x
示例6: learnConcatRealImagBlock
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Convolution2D [as 別名]
def learnConcatRealImagBlock(I, filter_size, featmaps, stage, block, convArgs, bnArgs, d):
"""Learn initial imaginary component for input."""
conv_name_base = 'res'+str(stage)+block+'_branch'
bn_name_base = 'bn' +str(stage)+block+'_branch'
O = BatchNormalization(name=bn_name_base+'2a', **bnArgs)(I)
O = Activation(d.act)(O)
O = Convolution2D(featmaps[0], filter_size,
name = conv_name_base+'2a',
padding = 'same',
kernel_initializer = 'he_normal',
use_bias = False,
kernel_regularizer = l2(0.0001))(O)
O = BatchNormalization(name=bn_name_base+'2b', **bnArgs)(O)
O = Activation(d.act)(O)
O = Convolution2D(featmaps[1], filter_size,
name = conv_name_base+'2b',
padding = 'same',
kernel_initializer = 'he_normal',
use_bias = False,
kernel_regularizer = l2(0.0001))(O)
return O
示例7: build_policy_and_value_networks
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Convolution2D [as 別名]
def build_policy_and_value_networks(num_actions, agent_history_length, resized_width, resized_height):
with tf.device("/cpu:0"):
state = tf.placeholder("float", [None, agent_history_length, resized_width, resized_height])
inputs = Input(shape=(agent_history_length, resized_width, resized_height,))
shared = Convolution2D(name="conv1", nb_filter=16, nb_row=8, nb_col=8, subsample=(4,4), activation='relu', border_mode='same')(inputs)
shared = Convolution2D(name="conv2", nb_filter=32, nb_row=4, nb_col=4, subsample=(2,2), activation='relu', border_mode='same')(shared)
shared = Flatten()(shared)
shared = Dense(name="h1", output_dim=256, activation='relu')(shared)
action_probs = Dense(name="p", output_dim=num_actions, activation='softmax')(shared)
state_value = Dense(name="v", output_dim=1, activation='linear')(shared)
policy_network = Model(input=inputs, output=action_probs)
value_network = Model(input=inputs, output=state_value)
p_params = policy_network.trainable_weights
v_params = value_network.trainable_weights
p_out = policy_network(state)
v_out = value_network(state)
return state, p_out, v_out, p_params, v_params
示例8: build_model
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Convolution2D [as 別名]
def build_model(self):
states_in = Input(shape=self.num_states,name='states_in')
x = Convolution2D(32,(8,8),strides=(4,4),activation='relu')(states_in)
x = Convolution2D(64,(4,4), strides=(2,2), activation='relu')(x)
x = Convolution2D(64,(3,3), strides=(1,1), activation='relu')(x)
x = Flatten(name='flattened')(x)
x = Dense(512,activation='relu')(x)
x = Dense(self.num_actions,activation="linear")(x)
model = Model(inputs=states_in, outputs=x)
self.opt = optimizers.Adam(lr=learning_rate, beta_1=0.9, beta_2=0.999, epsilon=None,decay=0.0, amsgrad=False)
model.compile(loss=keras.losses.mse,optimizer=self.opt)
plot_model(model,to_file='model_architecture.png',show_shapes=True)
return model
# Train function
示例9: fire_module
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Convolution2D [as 別名]
def fire_module(x, fire_id, squeeze=16, expand=64):
s_id = 'fire' + str(fire_id) + '/'
if K.image_data_format() == 'channels_first':
channel_axis = 1
else:
channel_axis = 3
x = Convolution2D(squeeze, (1, 1), padding='valid', name=s_id + sq1x1)(x)
x = Activation('relu', name=s_id + relu + sq1x1)(x)
left = Convolution2D(expand, (1, 1), padding='valid', name=s_id + exp1x1)(x)
left = Activation('relu', name=s_id + relu + exp1x1)(left)
right = Convolution2D(expand, (3, 3), padding='same', name=s_id + exp3x3)(x)
right = Activation('relu', name=s_id + relu + exp3x3)(right)
x = concatenate([left, right], axis=channel_axis, name=s_id + 'concat')
return x
# Original SqueezeNet from paper.
示例10: drqn
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Convolution2D [as 別名]
def drqn(input_shape, action_size, learning_rate):
model = Sequential()
model.add(TimeDistributed(Convolution2D(32, 8, 8, subsample=(4,4), activation='relu'), input_shape=(input_shape)))
model.add(TimeDistributed(Convolution2D(64, 4, 4, subsample=(2,2), activation='relu')))
model.add(TimeDistributed(Convolution2D(64, 3, 3, activation='relu')))
model.add(TimeDistributed(Flatten()))
# Use all traces for training
#model.add(LSTM(512, return_sequences=True, activation='tanh'))
#model.add(TimeDistributed(Dense(output_dim=action_size, activation='linear')))
# Use last trace for training
model.add(LSTM(512, activation='tanh'))
model.add(Dense(output_dim=action_size, activation='linear'))
adam = Adam(lr=learning_rate)
model.compile(loss='mse',optimizer=adam)
return model
示例11: a2c_lstm
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Convolution2D [as 別名]
def a2c_lstm(input_shape, action_size, value_size, learning_rate):
"""Actor and Critic Network share convolution layers with LSTM
"""
state_input = Input(shape=(input_shape)) # 4x64x64x3
x = TimeDistributed(Convolution2D(32, 8, 8, subsample=(4,4), activation='relu'))(state_input)
x = TimeDistributed(Convolution2D(64, 4, 4, subsample=(2,2), activation='relu'))(x)
x = TimeDistributed(Convolution2D(64, 3, 3, activation='relu'))(x)
x = TimeDistributed(Flatten())(x)
x = LSTM(512, activation='tanh')(x)
# Actor Stream
actor = Dense(action_size, activation='softmax')(x)
# Critic Stream
critic = Dense(value_size, activation='linear')(x)
model = Model(input=state_input, output=[actor, critic])
adam = Adam(lr=learning_rate, clipnorm=1.0)
model.compile(loss=['categorical_crossentropy', 'mse'], optimizer=adam, loss_weights=[1., 1.])
return model
示例12: build_cnn_to_lstm_model
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Convolution2D [as 別名]
def build_cnn_to_lstm_model(self, input_shape, optimizer=Adam(lr=1e-6, decay=1e-5)):
model = Sequential()
model.add(TimeDistributed(Convolution2D(16, 3, 3), input_shape=input_shape))
model.add(TimeDistributed(Activation('relu')))
model.add(TimeDistributed(Convolution2D(16, 3, 3)))
model.add(TimeDistributed(Activation('relu')))
model.add(TimeDistributed(MaxPooling2D(pool_size=(2, 2))))
model.add(TimeDistributed(Dropout(0.2)))
model.add(TimeDistributed(Flatten()))
model.add(TimeDistributed(Dense(200)))
model.add(TimeDistributed(Dense(50, name="first_dense")))
model.add(LSTM(20, return_sequences=False, name="lstm_layer"))
model.add(Dense(2, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer=optimizer)
self.model = model
示例13: test_unsupported_variational_deconv
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Convolution2D [as 別名]
def test_unsupported_variational_deconv(self):
from keras.layers import Input, Lambda, Convolution2D, Flatten, Dense
x = Input(shape=(8, 8, 3))
conv_1 = Convolution2D(4, 2, 2, border_mode="same", activation="relu")(x)
flat = Flatten()(conv_1)
hidden = Dense(10, activation="relu")(flat)
z_mean = Dense(10)(hidden)
z_log_var = Dense(10)(hidden)
def sampling(args):
z_mean, z_log_var = args
return z_mean + z_log_var
z = Lambda(sampling, output_shape=(10,))([z_mean, z_log_var])
model = Model([x], [z])
spec = keras.convert(model, ["input"], ["output"]).get_spec()
示例14: get_tutorial_model
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Convolution2D [as 別名]
def get_tutorial_model():
model = Sequential()
model.add(Convolution2D(32, 3, 3, input_shape=(150, 150, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2), dim_ordering='tf'))
model.add(Convolution2D(32, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2), dim_ordering='tf'))
model.add(Convolution2D(64, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2), dim_ordering='tf'))
# the model so far outputs 3D feature maps (height, width, features)
model.add(Flatten()) # this converts our 3D feature maps to 1D feature vectors
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(1))
model.add(Activation('sigmoid'))
return model
示例15: get_model
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Convolution2D [as 別名]
def get_model():
model = Sequential()
model.add(Convolution2D(32, 3, 3, input_shape=(150, 150, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2), dim_ordering='tf'))
model.add(Convolution2D(32, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2), dim_ordering='tf'))
model.add(Convolution2D(64, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2), dim_ordering='tf'))
# the model so far outputs 3D feature maps (height, width, features)
model.add(Flatten()) # this converts our 3D feature maps to 1D feature vectors
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(1))
model.add(Activation('sigmoid'))
return model