當前位置: 首頁>>代碼示例>>Python>>正文


Python layers.Convolution2D方法代碼示例

本文整理匯總了Python中keras.layers.Convolution2D方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.Convolution2D方法的具體用法?Python layers.Convolution2D怎麽用?Python layers.Convolution2D使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.layers的用法示例。


在下文中一共展示了layers.Convolution2D方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: modelB

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Convolution2D [as 別名]
def modelB():
    model = Sequential()
    model.add(Dropout(0.2, input_shape=(FLAGS.IMAGE_ROWS,
                                        FLAGS.IMAGE_COLS,
                                        FLAGS.NUM_CHANNELS)))
    model.add(Convolution2D(64, 8, 8,
                            subsample=(2, 2),
                            border_mode='same'))
    model.add(Activation('relu'))

    model.add(Convolution2D(128, 6, 6,
                            subsample=(2, 2),
                            border_mode='valid'))
    model.add(Activation('relu'))

    model.add(Convolution2D(128, 5, 5,
                            subsample=(1, 1)))
    model.add(Activation('relu'))

    model.add(Dropout(0.5))

    model.add(Flatten())
    model.add(Dense(FLAGS.NUM_CLASSES))
    return model 
開發者ID:sunblaze-ucb,項目名稱:blackbox-attacks,代碼行數:26,代碼來源:mnist.py

示例2: modelC

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Convolution2D [as 別名]
def modelC():
    model = Sequential()
    model.add(Convolution2D(128, 3, 3,
                            border_mode='valid',
                            input_shape=(FLAGS.IMAGE_ROWS,
                                         FLAGS.IMAGE_COLS,
                                         FLAGS.NUM_CHANNELS)))
    model.add(Activation('relu'))

    model.add(Convolution2D(64, 3, 3))
    model.add(Activation('relu'))

    model.add(Dropout(0.25))

    model.add(Flatten())
    model.add(Dense(128))
    model.add(Activation('relu'))

    model.add(Dropout(0.5))
    model.add(Dense(FLAGS.NUM_CLASSES))
    return model 
開發者ID:sunblaze-ucb,項目名稱:blackbox-attacks,代碼行數:23,代碼來源:mnist.py

示例3: modelF

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Convolution2D [as 別名]
def modelF():
    model = Sequential()

    model.add(Convolution2D(32, 3, 3,
                            border_mode='valid',
                            input_shape=(FLAGS.IMAGE_ROWS,
                                         FLAGS.IMAGE_COLS,
                                         FLAGS.NUM_CHANNELS)))
    model.add(Activation('relu'))

    model.add(MaxPooling2D(pool_size=(2, 2)))

    model.add(Convolution2D(64, 3, 3))
    model.add(Activation('relu'))

    model.add(MaxPooling2D(pool_size=(2, 2)))

    model.add(Flatten())
    model.add(Dense(1024))
    model.add(Activation('relu'))

    model.add(Dense(FLAGS.NUM_CLASSES))

    return model 
開發者ID:sunblaze-ucb,項目名稱:blackbox-attacks,代碼行數:26,代碼來源:mnist.py

示例4: value_distribution_network

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Convolution2D [as 別名]
def value_distribution_network(input_shape, num_atoms, action_size, learning_rate):
        """Model Value Distribution

        With States as inputs and output Probability Distributions for all Actions
        """

        state_input = Input(shape=(input_shape)) 
        cnn_feature = Convolution2D(32, 8, 8, subsample=(4,4), activation='relu')(state_input)
        cnn_feature = Convolution2D(64, 4, 4, subsample=(2,2), activation='relu')(cnn_feature)
        cnn_feature = Convolution2D(64, 3, 3, activation='relu')(cnn_feature)
        cnn_feature = Flatten()(cnn_feature)
        cnn_feature = Dense(512, activation='relu')(cnn_feature)

        distribution_list = []
        for i in range(action_size):
            distribution_list.append(Dense(num_atoms, activation='softmax')(cnn_feature))

        model = Model(input=state_input, output=distribution_list)

        adam = Adam(lr=learning_rate)
        model.compile(loss='categorical_crossentropy',optimizer=adam)

        return model 
開發者ID:flyyufelix,項目名稱:C51-DDQN-Keras,代碼行數:25,代碼來源:networks.py

示例5: conv2d_bn

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Convolution2D [as 別名]
def conv2d_bn(x, nb_filter, nb_row, nb_col,
              border_mode='same', subsample=(1, 1),
              name=None):
    '''Utility function to apply conv + BN.
    '''
    if name is not None:
        bn_name = name + '_bn'
        conv_name = name + '_conv'
    else:
        bn_name = None
        conv_name = None
    if K.image_dim_ordering() == 'th':
        bn_axis = 1
    else:
        bn_axis = 3
    x = Convolution2D(nb_filter, nb_row, nb_col,
                      subsample=subsample,
                      activation='relu',
                      border_mode=border_mode,
                      name=conv_name)(x)
    x = BatchNormalization(axis=bn_axis, name=bn_name)(x)
    return x 
開發者ID:ChunML,項目名稱:DeepLearning,代碼行數:24,代碼來源:inception_v3.py

示例6: learnConcatRealImagBlock

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Convolution2D [as 別名]
def learnConcatRealImagBlock(I, filter_size, featmaps, stage, block, convArgs, bnArgs, d):
	"""Learn initial imaginary component for input."""
	
	conv_name_base = 'res'+str(stage)+block+'_branch'
	bn_name_base   = 'bn' +str(stage)+block+'_branch'
	
	O = BatchNormalization(name=bn_name_base+'2a', **bnArgs)(I)
	O = Activation(d.act)(O)
	O = Convolution2D(featmaps[0], filter_size,
	                  name               = conv_name_base+'2a',
	                  padding            = 'same',
	                  kernel_initializer = 'he_normal',
	                  use_bias           = False,
	                  kernel_regularizer = l2(0.0001))(O)
	
	O = BatchNormalization(name=bn_name_base+'2b', **bnArgs)(O)
	O = Activation(d.act)(O)
	O = Convolution2D(featmaps[1], filter_size,
	                  name               = conv_name_base+'2b',
	                  padding            = 'same',
	                  kernel_initializer = 'he_normal',
	                  use_bias           = False,
	                  kernel_regularizer = l2(0.0001))(O)
	
	return O 
開發者ID:ChihebTrabelsi,項目名稱:deep_complex_networks,代碼行數:27,代碼來源:training.py

示例7: build_policy_and_value_networks

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Convolution2D [as 別名]
def build_policy_and_value_networks(num_actions, agent_history_length, resized_width, resized_height):
    with tf.device("/cpu:0"):
        state = tf.placeholder("float", [None, agent_history_length, resized_width, resized_height])
        
        inputs = Input(shape=(agent_history_length, resized_width, resized_height,))
        shared = Convolution2D(name="conv1", nb_filter=16, nb_row=8, nb_col=8, subsample=(4,4), activation='relu', border_mode='same')(inputs)
        shared = Convolution2D(name="conv2", nb_filter=32, nb_row=4, nb_col=4, subsample=(2,2), activation='relu', border_mode='same')(shared)
        shared = Flatten()(shared)
        shared = Dense(name="h1", output_dim=256, activation='relu')(shared)

        action_probs = Dense(name="p", output_dim=num_actions, activation='softmax')(shared)
        
        state_value = Dense(name="v", output_dim=1, activation='linear')(shared)

        policy_network = Model(input=inputs, output=action_probs)
        value_network = Model(input=inputs, output=state_value)

        p_params = policy_network.trainable_weights
        v_params = value_network.trainable_weights

        p_out = policy_network(state)
        v_out = value_network(state)

    return state, p_out, v_out, p_params, v_params 
開發者ID:coreylynch,項目名稱:async-rl,代碼行數:26,代碼來源:a3c_model.py

示例8: build_model

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Convolution2D [as 別名]
def build_model(self):

        states_in = Input(shape=self.num_states,name='states_in')
        x = Convolution2D(32,(8,8),strides=(4,4),activation='relu')(states_in)
        x = Convolution2D(64,(4,4), strides=(2,2), activation='relu')(x)
        x = Convolution2D(64,(3,3), strides=(1,1), activation='relu')(x)
        x = Flatten(name='flattened')(x)
        x = Dense(512,activation='relu')(x)
        x = Dense(self.num_actions,activation="linear")(x)

        model = Model(inputs=states_in, outputs=x)
        self.opt = optimizers.Adam(lr=learning_rate, beta_1=0.9, beta_2=0.999, epsilon=None,decay=0.0, amsgrad=False)
        model.compile(loss=keras.losses.mse,optimizer=self.opt)
        plot_model(model,to_file='model_architecture.png',show_shapes=True)

        return model
 
    # Train function 
開發者ID:PacktPublishing,項目名稱:Intelligent-Projects-Using-Python,代碼行數:20,代碼來源:DQN.py

示例9: fire_module

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Convolution2D [as 別名]
def fire_module(x, fire_id, squeeze=16, expand=64):
    s_id = 'fire' + str(fire_id) + '/'

    if K.image_data_format() == 'channels_first':
        channel_axis = 1
    else:
        channel_axis = 3
    
    x = Convolution2D(squeeze, (1, 1), padding='valid', name=s_id + sq1x1)(x)
    x = Activation('relu', name=s_id + relu + sq1x1)(x)

    left = Convolution2D(expand, (1, 1), padding='valid', name=s_id + exp1x1)(x)
    left = Activation('relu', name=s_id + relu + exp1x1)(left)

    right = Convolution2D(expand, (3, 3), padding='same', name=s_id + exp3x3)(x)
    right = Activation('relu', name=s_id + relu + exp3x3)(right)

    x = concatenate([left, right], axis=channel_axis, name=s_id + 'concat')
    return x


# Original SqueezeNet from paper. 
開發者ID:OlafenwaMoses,項目名稱:Model-Playgrounds,代碼行數:24,代碼來源:squeezenet.py

示例10: drqn

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Convolution2D [as 別名]
def drqn(input_shape, action_size, learning_rate):

        model = Sequential()
        model.add(TimeDistributed(Convolution2D(32, 8, 8, subsample=(4,4), activation='relu'), input_shape=(input_shape)))
        model.add(TimeDistributed(Convolution2D(64, 4, 4, subsample=(2,2), activation='relu')))
        model.add(TimeDistributed(Convolution2D(64, 3, 3, activation='relu')))
        model.add(TimeDistributed(Flatten()))

        # Use all traces for training
        #model.add(LSTM(512, return_sequences=True,  activation='tanh'))
        #model.add(TimeDistributed(Dense(output_dim=action_size, activation='linear')))

        # Use last trace for training
        model.add(LSTM(512,  activation='tanh'))
        model.add(Dense(output_dim=action_size, activation='linear'))

        adam = Adam(lr=learning_rate)
        model.compile(loss='mse',optimizer=adam)

        return model 
開發者ID:flyyufelix,項目名稱:VizDoom-Keras-RL,代碼行數:22,代碼來源:networks.py

示例11: a2c_lstm

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Convolution2D [as 別名]
def a2c_lstm(input_shape, action_size, value_size, learning_rate):
        """Actor and Critic Network share convolution layers with LSTM
        """

        state_input = Input(shape=(input_shape)) # 4x64x64x3
        x = TimeDistributed(Convolution2D(32, 8, 8, subsample=(4,4), activation='relu'))(state_input)
        x = TimeDistributed(Convolution2D(64, 4, 4, subsample=(2,2), activation='relu'))(x)
        x = TimeDistributed(Convolution2D(64, 3, 3, activation='relu'))(x)
        x = TimeDistributed(Flatten())(x)

        x = LSTM(512, activation='tanh')(x)

        # Actor Stream
        actor = Dense(action_size, activation='softmax')(x)

        # Critic Stream
        critic = Dense(value_size, activation='linear')(x)

        model = Model(input=state_input, output=[actor, critic])

        adam = Adam(lr=learning_rate, clipnorm=1.0)
        model.compile(loss=['categorical_crossentropy', 'mse'], optimizer=adam, loss_weights=[1., 1.])

        return model 
開發者ID:flyyufelix,項目名稱:VizDoom-Keras-RL,代碼行數:26,代碼來源:networks.py

示例12: build_cnn_to_lstm_model

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Convolution2D [as 別名]
def build_cnn_to_lstm_model(self, input_shape, optimizer=Adam(lr=1e-6, decay=1e-5)):

        model = Sequential()

        model.add(TimeDistributed(Convolution2D(16, 3, 3), input_shape=input_shape))
        model.add(TimeDistributed(Activation('relu')))
        model.add(TimeDistributed(Convolution2D(16, 3, 3)))
        model.add(TimeDistributed(Activation('relu')))
        model.add(TimeDistributed(MaxPooling2D(pool_size=(2, 2))))
        model.add(TimeDistributed(Dropout(0.2)))
        model.add(TimeDistributed(Flatten()))
        model.add(TimeDistributed(Dense(200)))
        model.add(TimeDistributed(Dense(50, name="first_dense")))
        model.add(LSTM(20, return_sequences=False, name="lstm_layer"))
        model.add(Dense(2, activation='softmax'))

        model.compile(loss='categorical_crossentropy', optimizer=optimizer)

        self.model = model 
開發者ID:Ekim-Yurtsever,項目名稱:DeepTL-Lane-Change-Classification,代碼行數:21,代碼來源:models.py

示例13: test_unsupported_variational_deconv

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Convolution2D [as 別名]
def test_unsupported_variational_deconv(self):
        from keras.layers import Input, Lambda, Convolution2D, Flatten, Dense

        x = Input(shape=(8, 8, 3))
        conv_1 = Convolution2D(4, 2, 2, border_mode="same", activation="relu")(x)
        flat = Flatten()(conv_1)
        hidden = Dense(10, activation="relu")(flat)
        z_mean = Dense(10)(hidden)
        z_log_var = Dense(10)(hidden)

        def sampling(args):
            z_mean, z_log_var = args
            return z_mean + z_log_var

        z = Lambda(sampling, output_shape=(10,))([z_mean, z_log_var])
        model = Model([x], [z])
        spec = keras.convert(model, ["input"], ["output"]).get_spec() 
開發者ID:apple,項目名稱:coremltools,代碼行數:19,代碼來源:test_keras.py

示例14: get_tutorial_model

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Convolution2D [as 別名]
def get_tutorial_model():
    model = Sequential()
    model.add(Convolution2D(32, 3, 3, input_shape=(150, 150, 3)))
    model.add(Activation('relu'))
    model.add(MaxPooling2D(pool_size=(2, 2), dim_ordering='tf'))

    model.add(Convolution2D(32, 3, 3))
    model.add(Activation('relu'))
    model.add(MaxPooling2D(pool_size=(2, 2), dim_ordering='tf'))

    model.add(Convolution2D(64, 3, 3))
    model.add(Activation('relu'))
    model.add(MaxPooling2D(pool_size=(2, 2), dim_ordering='tf'))

    # the model so far outputs 3D feature maps (height, width, features)

    model.add(Flatten())  # this converts our 3D feature maps to 1D feature vectors
    model.add(Dense(64))
    model.add(Activation('relu'))
    model.add(Dropout(0.5))
    model.add(Dense(1))
    model.add(Activation('sigmoid'))

    return model 
開發者ID:johnmartinsson,項目名稱:bird-species-classification,代碼行數:26,代碼來源:tutorial.py

示例15: get_model

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Convolution2D [as 別名]
def get_model():
    model = Sequential()
    model.add(Convolution2D(32, 3, 3, input_shape=(150, 150, 3)))
    model.add(Activation('relu'))
    model.add(MaxPooling2D(pool_size=(2, 2), dim_ordering='tf'))

    model.add(Convolution2D(32, 3, 3))
    model.add(Activation('relu'))
    model.add(MaxPooling2D(pool_size=(2, 2), dim_ordering='tf'))

    model.add(Convolution2D(64, 3, 3))
    model.add(Activation('relu'))
    model.add(MaxPooling2D(pool_size=(2, 2), dim_ordering='tf'))

    # the model so far outputs 3D feature maps (height, width, features)

    model.add(Flatten())  # this converts our 3D feature maps to 1D feature vectors
    model.add(Dense(64))
    model.add(Activation('relu'))
    model.add(Dropout(0.5))
    model.add(Dense(1))
    model.add(Activation('sigmoid'))

    return model 
開發者ID:johnmartinsson,項目名稱:bird-species-classification,代碼行數:26,代碼來源:tutorial.py


注:本文中的keras.layers.Convolution2D方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。