本文整理匯總了Python中keras.layers.ConvLSTM2D方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.ConvLSTM2D方法的具體用法?Python layers.ConvLSTM2D怎麽用?Python layers.ConvLSTM2D使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類keras.layers
的用法示例。
在下文中一共展示了layers.ConvLSTM2D方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: convert_weights
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import ConvLSTM2D [as 別名]
def convert_weights(layer, weights):
if layer.__class__.__name__ == 'GRU':
W = [np.split(w, 3, axis=-1) for w in weights]
return sum(map(list, zip(*W)), [])
elif layer.__class__.__name__ in ('LSTM', 'ConvLSTM2D'):
W = [np.split(w, 4, axis=-1) for w in weights]
for w in W:
w[2], w[1] = w[1], w[2]
return sum(map(list, zip(*W)), [])
elif layer.__class__.__name__ == 'Conv2DTranspose':
return [np.transpose(weights[0], (2, 3, 0, 1)), weights[1]]
return weights
示例2: load_model
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import ConvLSTM2D [as 別名]
def load_model():
# use simple CNN structure
in_shape = (SequenceLength, IMSIZE[0], IMSIZE[1], 3)
model = Sequential()
model.add(ConvLSTM2D(32, kernel_size=(7, 7), padding='valid', return_sequences=True, input_shape=in_shape))
model.add(Activation('relu'))
model.add(MaxPooling3D(pool_size=(1, 2, 2)))
model.add(ConvLSTM2D(64, kernel_size=(5, 5), padding='valid', return_sequences=True))
model.add(MaxPooling3D(pool_size=(1, 2, 2)))
model.add(ConvLSTM2D(96, kernel_size=(3, 3), padding='valid', return_sequences=True))
model.add(Activation('relu'))
model.add(ConvLSTM2D(96, kernel_size=(3, 3), padding='valid', return_sequences=True))
model.add(Activation('relu'))
model.add(ConvLSTM2D(96, kernel_size=(3, 3), padding='valid', return_sequences=True))
model.add(MaxPooling3D(pool_size=(1, 2, 2)))
model.add(Dense(320))
model.add(Activation('relu'))
model.add(Dropout(0.5))
out_shape = model.output_shape
# print('====Model shape: ', out_shape)
model.add(Reshape((SequenceLength, out_shape[2] * out_shape[3] * out_shape[4])))
model.add(LSTM(64, return_sequences=False))
model.add(Dropout(0.5))
model.add(Dense(N_CLASSES, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])
# model structure summary
print(model.summary())
return model
示例3: pie_convlstm_encdec
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import ConvLSTM2D [as 別名]
def pie_convlstm_encdec(self):
'''
Create an LSTM Encoder-Decoder model for intention estimation
'''
#Generate input data. the shapes is (sequence_lenght,length of flattened features)
encoder_input=input_data=Input(shape=(self._sequence_length,) + self.context_model.output_shape[1:],
name = "encoder_input")
interm_input = encoder_input
# Generate Encoder LSTM Unit
encoder_model = ConvLSTM2D(filters=self._convlstm_num_filters,
kernel_size=self._convlstm_kernel_size,
kernel_regularizer=self._kernel_regularizer,
recurrent_regularizer=self._recurrent_regularizer,
bias_regularizer=self._bias_regularizer,
dropout=self._lstm_dropout,
recurrent_dropout=self._lstm_recurrent_dropout,
return_sequences=False)(interm_input)
encoder_output = Flatten(name='encoder_flatten')(encoder_model)
# Generate Decoder LSTM unit
decoder_input = Input(shape=(self._decoder_seq_length,
self._decoder_input_size),
name='decoder_input')
encoder_vec = RepeatVector(self._decoder_seq_length)(encoder_output)
decoder_concat_inputs = Concatenate(axis=2)([encoder_vec, decoder_input])
decoder_model = self.create_lstm_model(name='decoder_network',
r_state = False,
r_sequence=False)(decoder_concat_inputs)
decoder_dense_output = Dense(self._decoder_dense_output_size,
activation='sigmoid',
name='decoder_dense')(decoder_model)
decoder_output = decoder_dense_output
self.train_model = Model(inputs=[encoder_input, decoder_input],
outputs=decoder_output)
self.train_model.summary()
return self.train_model
示例4: test_load_layers
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import ConvLSTM2D [as 別名]
def test_load_layers():
from keras.layers import ConvLSTM2D, TimeDistributed, Bidirectional, Conv2D, Input
from keras.models import Model
if K.backend() == 'tensorflow' or K.backend() == 'cntk':
inputs = Input(shape=(10, 20, 20, 1))
else:
inputs = Input(shape=(10, 1, 20, 20))
td_conv = TimeDistributed(Conv2D(15, (5, 5)))(inputs)
bi_convlstm2d = Bidirectional(ConvLSTM2D(10, (3, 3)), merge_mode='concat')(td_conv)
model = Model(inputs=inputs, outputs=bi_convlstm2d)
weight_value_tuples = []
# TimeDistributed Conv2D layer
# use 'channels_first' data format to check that the function is being called correctly for Conv2D
# old: (filters, stack_size, kernel_rows, kernel_cols)
# new: (kernel_rows, kernel_cols, stack_size, filters)
weight_tensor_td_conv_old = list()
weight_tensor_td_conv_old.append(np.zeros((15, 1, 5, 5)))
weight_tensor_td_conv_old.append(np.zeros((15,)))
td_conv_layer = model.layers[1]
td_conv_layer.layer.data_format = 'channels_first'
weight_tensor_td_conv_new = topology.preprocess_weights_for_loading(
td_conv_layer,
weight_tensor_td_conv_old,
original_keras_version='1')
symbolic_weights = td_conv_layer.weights
assert (len(symbolic_weights) == len(weight_tensor_td_conv_new))
weight_value_tuples += zip(symbolic_weights, weight_tensor_td_conv_new)
# Bidirectional ConvLSTM2D layer
# old ConvLSTM2D took a list of 12 weight tensors, returns a list of 3 concatenated larger tensors.
weight_tensor_bi_convlstm_old = []
for j in range(2): # bidirectional
for i in range(4):
weight_tensor_bi_convlstm_old.append(np.zeros((3, 3, 15, 10))) # kernel
weight_tensor_bi_convlstm_old.append(np.zeros((3, 3, 10, 10))) # recurrent kernel
weight_tensor_bi_convlstm_old.append(np.zeros((10,))) # bias
bi_convlstm_layer = model.layers[2]
weight_tensor_bi_convlstm_new = topology.preprocess_weights_for_loading(
bi_convlstm_layer,
weight_tensor_bi_convlstm_old,
original_keras_version='1')
symbolic_weights = bi_convlstm_layer.weights
assert (len(symbolic_weights) == len(weight_tensor_bi_convlstm_new))
weight_value_tuples += zip(symbolic_weights, weight_tensor_bi_convlstm_new)
K.batch_set_value(weight_value_tuples)
assert np.all(K.eval(model.layers[1].weights[0]) == weight_tensor_td_conv_new[0])
assert np.all(K.eval(model.layers[1].weights[1]) == weight_tensor_td_conv_new[1])
assert np.all(K.eval(model.layers[2].weights[0]) == weight_tensor_bi_convlstm_new[0])
assert np.all(K.eval(model.layers[2].weights[1]) == weight_tensor_bi_convlstm_new[1])
assert np.all(K.eval(model.layers[2].weights[2]) == weight_tensor_bi_convlstm_new[2])
assert np.all(K.eval(model.layers[2].weights[3]) == weight_tensor_bi_convlstm_new[3])
assert np.all(K.eval(model.layers[2].weights[4]) == weight_tensor_bi_convlstm_new[4])
assert np.all(K.eval(model.layers[2].weights[5]) == weight_tensor_bi_convlstm_new[5])