當前位置: 首頁>>代碼示例>>Python>>正文


Python layers.Conv3D方法代碼示例

本文整理匯總了Python中keras.layers.Conv3D方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.Conv3D方法的具體用法?Python layers.Conv3D怎麽用?Python layers.Conv3D使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.layers的用法示例。


在下文中一共展示了layers.Conv3D方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_model_compiled

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Conv3D [as 別名]
def get_model_compiled(shapeinput, num_class, w_decay=0, lr=1e-3):
    clf = Sequential()
    clf.add(Conv3D(32, kernel_size=(5, 5, 24), input_shape=shapeinput))
    clf.add(BatchNormalization())
    clf.add(Activation('relu'))
    clf.add(Conv3D(64, (5, 5, 16)))
    clf.add(BatchNormalization())
    clf.add(Activation('relu'))
    clf.add(MaxPooling3D(pool_size=(2, 2, 1)))
    clf.add(Flatten())
    clf.add(Dense(300, kernel_regularizer=regularizers.l2(w_decay)))
    clf.add(BatchNormalization())
    clf.add(Activation('relu'))
    clf.add(Dense(num_class, activation='softmax'))
    clf.compile(loss=categorical_crossentropy, optimizer=Adam(lr=lr), metrics=['accuracy'])
    return clf 
開發者ID:mhaut,項目名稱:hyperspectral_deeplearning_review,代碼行數:18,代碼來源:cnn3d.py

示例2: transition_layer_3D

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Conv3D [as 別名]
def transition_layer_3D(input_tensor, numFilters, compressionFactor=1.0):

    numOutPutFilters = int(numFilters*compressionFactor)

    if K.image_data_format() == 'channels_last':
        bn_axis = -1
    else:
        bn_axis = 1

    x = BatchNormalization(axis=bn_axis)(input_tensor)
    x = Activation('relu')(x)

    x = Conv3D(numOutPutFilters, (1, 1, 1), strides=(1, 1, 1), padding='same', kernel_initializer='he_normal')(x)

    # downsampling
    x = AveragePooling3D((2, 2, 2), strides=(2, 2, 2), padding='valid', data_format='channels_last', name='')(x)

    return x, numOutPutFilters 
開發者ID:thomaskuestner,項目名稱:CNNArt,代碼行數:20,代碼來源:densely_connected_cnn_blocks.py

示例3: transition_SE_layer_3D

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Conv3D [as 別名]
def transition_SE_layer_3D(input_tensor, numFilters, compressionFactor=1.0, se_ratio=16):

    numOutPutFilters = int(numFilters*compressionFactor)

    if K.image_data_format() == 'channels_last':
        bn_axis = -1
    else:
        bn_axis = 1

    x = BatchNormalization(axis=bn_axis)(input_tensor)
    x = Activation('relu')(x)

    x = Conv3D(numOutPutFilters, (1, 1, 1), strides=(1, 1, 1), padding='same', kernel_initializer='he_normal')(x)

    # SE Block
    x = squeeze_excitation_block_3D(x, ratio=se_ratio)
    #x = BatchNormalization(axis=bn_axis)(x)

    # downsampling
    x = AveragePooling3D((2, 2, 2), strides=(2, 2, 2), padding='valid', data_format='channels_last', name='')(x)

    #x = squeeze_excitation_block(x, ratio=se_ratio)

    return x, numOutPutFilters 
開發者ID:thomaskuestner,項目名稱:CNNArt,代碼行數:26,代碼來源:densely_connected_cnn_blocks.py

示例4: conv_block3

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Conv3D [as 別名]
def conv_block3(n_filter, n1, n2, n3,
                activation="relu",
                border_mode="same",
                dropout=0.0,
                batch_norm=False,
                init="glorot_uniform",
                **kwargs):

    def _func(lay):
        if batch_norm:
            s = Conv3D(n_filter, (n1, n2, n3), padding=border_mode, kernel_initializer=init, **kwargs)(lay)
            s = BatchNormalization()(s)
            s = Activation(activation)(s)
        else:
            s = Conv3D(n_filter, (n1, n2, n3), padding=border_mode, kernel_initializer=init, activation=activation, **kwargs)(lay)
        if dropout is not None and dropout > 0:
            s = Dropout(dropout)(s)
        return s

    return _func 
開發者ID:CSBDeep,項目名稱:CSBDeep,代碼行數:22,代碼來源:blocks.py

示例5: denseblock

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Conv3D [as 別名]
def denseblock(x, growth_rate, strides=(1, 1, 1), internal_layers=4,
               dropout_rate=0., weight_decay=0.005):
    x = Conv3D(growth_rate, (3, 3, 3),
               kernel_initializer='he_normal',
               padding="same",
               strides=strides,
               use_bias=False,
               kernel_regularizer=l2(weight_decay))(x)
    if dropout_rate:
        x = Dropout(dropout_rate)(x)
    list_feat = []
    list_feat.append(x)
    for i in range(internal_layers - 1):
        x = conv_factory(x, growth_rate, dropout_rate, weight_decay)
        list_feat.append(x)
        x = concatenate(list_feat, axis=-1)
    x = Conv3D(internal_layers * growth_rate, (1, 1, 1),
               kernel_initializer='he_normal',
               padding="same",
               use_bias=False,
               kernel_regularizer=l2(weight_decay))(x)
    return x 
開發者ID:TianzhongSong,項目名稱:3D-ConvNets-for-Action-Recognition,代碼行數:24,代碼來源:drn.py

示例6: model_thresholding

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Conv3D [as 別名]
def model_thresholding():
    IMAGE_ORDERING =  "channels_first"
    img_input = Input(shape=(1,240,240,48))
    conv_1 = Conv3D(filters=16,kernel_size=(3, 3, 3),padding='same',activation='relu',name = "CONV3D_1",dilation_rate=(2, 2, 2),data_format=IMAGE_ORDERING)(img_input)
    maxpool_1 = MaxPool3D(name = "MAXPOOL3D_1",data_format=IMAGE_ORDERING)(conv_1)
    conv_2 = Conv3D(filters=32,kernel_size=(3, 3, 3),padding='same',activation='relu',name = "CONV3D_2",dilation_rate=(2, 2, 2),data_format=IMAGE_ORDERING)(maxpool_1)
    maxpool_2 = MaxPool3D(name = "MAXPOOL3D_2",data_format=IMAGE_ORDERING)(conv_2)
    conv_3 = Conv3D(filters=32,kernel_size=(3, 3, 3),padding='same',activation='relu',name = "CONV3D_3",dilation_rate=(2, 2, 2),data_format=IMAGE_ORDERING)(maxpool_2)

    convt_1 = Conv3DTranspose(16,kernel_size=(2,2,2),strides=(2,2,2),name = "CONV3DT_1",activation='relu',data_format=IMAGE_ORDERING)(conv_3)
    concat_1 = Concatenate(axis=1)([convt_1,conv_2])
    conv_4 = Conv3D(filters=16,kernel_size=(3, 3, 3),padding='same',activation='relu',name = "CONV3D_4",data_format=IMAGE_ORDERING)(concat_1)
    convt_2 = Conv3DTranspose(4,kernel_size=(2,2,2),strides=(2,2,2),name = "CONV3DT_2",activation='relu',data_format=IMAGE_ORDERING)(conv_4)
    concat_2 = Concatenate(axis=1)([convt_2,conv_1])
    conv_5 = Conv3D(filters=1,kernel_size=(3, 3, 3),padding='same',activation='sigmoid',name = "CONV3D_5",data_format=IMAGE_ORDERING)(concat_2)
    return Model(img_input, conv_5)
    concat_2 = Concatenate(axis=1)([convt_2,conv_1])
    conv_5 = Conv3D(filters=1,kernel_size=(3, 3, 3),padding='same',activation='sigmoid',name = "CONV3D_5",data_format=IMAGE_ORDERING)(concat_2)
    return Model(img_input, conv_5) 
開發者ID:ubamba98,項目名稱:Brain-Segmentation,代碼行數:21,代碼來源:model.py

示例7: _TTL

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Conv3D [as 別名]
def _TTL(prev_layer):
    # print('In _TTL')
    b1 = BatchNormalization()(prev_layer)
    b1 = Activation('relu')(b1)
    # b1 = Conv3D(128, kernel_size=(1), strides=1, use_bias=False, padding='same')(b1)
    b1 = Conv3D(128, kernel_size=(1, 3, 3), strides=1, use_bias=False, padding='same')(b1)

    b2 = BatchNormalization()(prev_layer)
    b2 = Activation('relu')(b2)
    b2 = Conv3D(128, kernel_size=(3, 3, 3), strides=1, use_bias=False, padding='same')(b2)

    b3 = BatchNormalization()(prev_layer)
    b3 = Activation('relu')(b3)
    b3 = Conv3D(128, kernel_size=(4, 3, 3), strides=1, use_bias=False, padding='same')(b3)

    x = keras.layers.concatenate([b1, b2, b3], axis=1)
    # print('completed _TTL')
    return x 
開發者ID:rekon,項目名稱:T3D-keras,代碼行數:20,代碼來源:T3D_keras.py

示例8: get_liveness_model

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Conv3D [as 別名]
def get_liveness_model():

    model = Sequential()
    model.add(Conv3D(32, kernel_size=(3, 3, 3),
                    activation='relu',
                    input_shape=(24,100,100,1)))
    model.add(Conv3D(64, (3, 3, 3), activation='relu'))
    model.add(MaxPooling3D(pool_size=(2, 2, 2)))
    model.add(Conv3D(64, (3, 3, 3), activation='relu'))
    model.add(MaxPooling3D(pool_size=(2, 2, 2)))
    model.add(Conv3D(64, (3, 3, 3), activation='relu'))
    model.add(MaxPooling3D(pool_size=(2, 2, 2)))
    model.add(Dropout(0.25))
    model.add(Flatten())
    model.add(Dense(128, activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(2, activation='softmax'))

    return model 
開發者ID:AhmetHamzaEmra,項目名稱:Intelegent_Lock,代碼行數:21,代碼來源:livenessmodel.py

示例9: conv3d_bn

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Conv3D [as 別名]
def conv3d_bn(x, filters, num_frames, num_row, num_col, padding='same', strides=(1, 1, 1), use_bias=False, use_activation_fn=True, use_bn=True, name=None):
    """Utility function to apply conv3d + BN.

    # Arguments
        x: input tensor.
        filters: filters in `Conv3D`.
        num_frames: frames (time depth) of the convolution kernel.
        num_row: height of the convolution kernel.
        num_col: width of the convolution kernel.
        padding: padding mode in `Conv3D`.
        strides: strides in `Conv3D`.
        use_bias: use bias or not
        use_activation_fn: use an activation function or not.
        use_bn: use batch normalization or not.
        name: name of the ops; will become `name + '_conv'`
            for the convolution and `name + '_bn'` for the
            batch norm layer.

    # Returns
        Output tensor after applying `Conv3D` and `BatchNormalization`.
    """
    if name is not None:
        bn_name = name + '_bn'
        conv_name = name + '_conv'
    else:
        bn_name = None
        conv_name = None

    x = Conv3D(filters, (num_frames, num_row, num_col), strides=strides, padding=padding, use_bias=use_bias, name=conv_name)(x)

    if use_bn:
        if K.image_data_format() == 'channels_first':
            bn_axis = 1
        else:
            bn_axis = 4
        x = BatchNormalization(axis=bn_axis, scale=False, name=bn_name)(x)

    if use_activation_fn:
        x = Activation('relu', name=name)(x)

    return x 
開發者ID:CMU-CREATE-Lab,項目名稱:deep-smoke-machine,代碼行數:43,代碼來源:i3d_keras.py

示例10: __temporal_convolutional_block

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Conv3D [as 別名]
def __temporal_convolutional_block(tensor, n_channels_per_branch, kernel_sizes, dilation_rates, layer_num, group_num):
    """
    Define 5 branches of convolutions that operate of channels of each group.
    """

    # branch 1: dimension reduction only and no temporal conv
    t_1 = Conv3D(n_channels_per_branch, kernel_size=(1, 1, 1), padding='same', name='conv_b1_g%d_tc%d' % (group_num, layer_num))(tensor)
    t_1 = BatchNormalization(name='bn_b1_g%d_tc%d' % (group_num, layer_num))(t_1)

    # branch 2: dimension reduction followed by depth-wise temp conv (kernel-size 3)
    t_2 = Conv3D(n_channels_per_branch, kernel_size=(1, 1, 1), padding='same', name='conv_b2_g%d_tc%d' % (group_num, layer_num))(tensor)
    t_2 = DepthwiseConv1DLayer(kernel_sizes[0], dilation_rates[0], padding='same', name='convdw_b2_g%d_tc%d' % (group_num, layer_num))(t_2)
    t_2 = BatchNormalization(name='bn_b2_g%d_tc%d' % (group_num, layer_num))(t_2)

    # branch 3: dimension reduction followed by depth-wise temp conv (kernel-size 5)
    t_3 = Conv3D(n_channels_per_branch, kernel_size=(1, 1, 1), padding='same', name='conv_b3_g%d_tc%d' % (group_num, layer_num))(tensor)
    t_3 = DepthwiseConv1DLayer(kernel_sizes[1], dilation_rates[1], padding='same', name='convdw_b3_g%d_tc%d' % (group_num, layer_num))(t_3)
    t_3 = BatchNormalization(name='bn_b3_g%d_tc%d' % (group_num, layer_num))(t_3)

    # branch 4: dimension reduction followed by depth-wise temp conv (kernel-size 7)
    t_4 = Conv3D(n_channels_per_branch, kernel_size=(1, 1, 1), padding='same', name='conv_b4_g%d_tc%d' % (group_num, layer_num))(tensor)
    t_4 = DepthwiseConv1DLayer(kernel_sizes[2], dilation_rates[2], padding='same', name='convdw_b4_g%d_tc%d' % (group_num, layer_num))(t_4)
    t_4 = BatchNormalization(name='bn_b4_g%d_tc%d' % (group_num, layer_num))(t_4)

    # branch 5: dimension reduction followed by temporal max pooling
    t_5 = Conv3D(n_channels_per_branch, kernel_size=(1, 1, 1), padding='same', name='conv_b5_g%d_tc%d' % (group_num, layer_num))(tensor)
    t_5 = MaxPooling3D(pool_size=(2, 1, 1), strides=(1, 1, 1), padding='same', name='maxpool_b5_g%d_tc%d' % (group_num, layer_num))(t_5)
    t_5 = BatchNormalization(name='bn_b5_g%d_tc%d' % (group_num, layer_num))(t_5)

    # concatenate channels of branches
    tensor = Concatenate(axis=4, name='concat_g%d_tc%d' % (group_num, layer_num))([t_1, t_2, t_3, t_4, t_5])

    return tensor 
開發者ID:CMU-CREATE-Lab,項目名稱:deep-smoke-machine,代碼行數:35,代碼來源:timeception.py

示例11: makecnn

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Conv3D [as 別名]
def makecnn(learningrate,regular,decay,channel_number):
    #model structure
    model=Sequential()
    model.add(Conv3D(100, kernel_size=(3,3,3), strides=(1, 1, 1), input_shape = (20,20,20,channel_number),padding='valid', data_format='channels_last', dilation_rate=(1, 1, 1),  use_bias=True, kernel_initializer='glorot_normal', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=l2(regular), kernel_constraint=None, bias_constraint=None))
    model.add(BatchNormalization())
    model.add(LeakyReLU(0.2))
    #model.add(Dropout(0.3))

    model.add(Conv3D(200, kernel_size=(3,3,3), strides=(1, 1, 1), padding='valid', data_format='channels_last', dilation_rate=(1, 1, 1), use_bias=True, kernel_initializer='glorot_normal', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=l2(regular), kernel_constraint=None, bias_constraint=None))
    model.add(BatchNormalization())
    model.add(LeakyReLU(0.2))
    #model.add(Dropout(0.3))

    model.add(MaxPooling3D(pool_size=(2, 2, 2), strides=None, padding='valid', data_format='channels_last'))
    model.add(BatchNormalization(axis=1, momentum=0.99, epsilon=0.001, center=True, scale=True, beta_initializer='zeros', gamma_initializer='ones', moving_mean_initializer='zeros', moving_variance_initializer='ones', beta_regularizer=None, gamma_regularizer=None, beta_constraint=None, gamma_constraint=None))
    model.add(Conv3D(400, kernel_size=(3,3,3),strides=(1, 1, 1), padding='valid', data_format='channels_last', dilation_rate=(1, 1, 1), use_bias=True, kernel_initializer='glorot_normal', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=l2(regular), kernel_constraint=None, bias_constraint=None))
    model.add(BatchNormalization())
    model.add(LeakyReLU(0.2))
    #model.add(Dropout(0.3))

    model.add(MaxPooling3D(pool_size=(2, 2, 2), strides=None, padding='valid', data_format='channels_last'))
    model.add(Flatten())
    model.add(Dropout(0.3))
    model.add(Dense(1000, use_bias=True, input_shape = (32000,),kernel_initializer='glorot_normal', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=l2(regular), kernel_constraint=None, bias_constraint=None))
    model.add(BatchNormalization())
    model.add(LeakyReLU(0.2))
    model.add(Dropout(0.3))

    model.add(Dense(100, use_bias=True, kernel_initializer='glorot_normal', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=l2(regular), kernel_constraint=None, bias_constraint=None))
    model.add(BatchNormalization())
    model.add(LeakyReLU(0.2))
    model.add(Dropout(0.3))

    model.add(Dense(1, activation='sigmoid', use_bias=True, kernel_initializer='glorot_normal', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=l2(regular), kernel_constraint=None, bias_constraint=None))
    nadam=Nadam(lr=learningrate, beta_1=0.9, beta_2=0.999, epsilon=1e-08, schedule_decay=decay)
    model.compile(loss='binary_crossentropy', optimizer=nadam, metrics=['accuracy',f1score,precision,recall])
    return model 
開發者ID:kiharalab,項目名稱:DOVE,代碼行數:39,代碼來源:Build_Model.py

示例12: _convND

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Conv3D [as 別名]
def _convND(ip, rank, channels, kernel=1):
    assert rank in [3, 4, 5], "Rank of input must be 3, 4 or 5"

    if rank == 3:
        x = Conv1D(channels, kernel, padding='same', use_bias=False, kernel_initializer='he_normal')(ip)
    elif rank == 4:
        x = Conv2D(channels, (kernel, kernel), padding='same', use_bias=False, kernel_initializer='he_normal')(ip)
    else:
        x = Conv3D(channels, (kernel, kernel, kernel), padding='same', use_bias=False, kernel_initializer='he_normal')(ip)

    return x 
開發者ID:titu1994,項目名稱:keras-global-context-networks,代碼行數:13,代碼來源:gc.py

示例13: Unet

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Conv3D [as 別名]
def Unet(input_shape, n_labels, n_filters=32, depth=4, activation='sigmoid'):
    # Input layer
    inputs = Input(input_shape)
    # Start the CNN Model chain with adding the inputs as first tensor
    cnn_chain = inputs
    # Cache contracting normalized conv layers
    # for later copy & concatenate links
    contracting_convs = []

    # Contracting Layers
    for i in range(0, depth):
        neurons = n_filters * 2**i
        cnn_chain, last_conv = contracting_layer(cnn_chain, neurons)
        contracting_convs.append(last_conv)

    # Middle Layer
    neurons = n_filters * 2**depth
    cnn_chain = middle_layer(cnn_chain, neurons)

    # Expanding Layers
    for i in reversed(range(0, depth)):
        neurons = n_filters * 2**i
        cnn_chain = expanding_layer(cnn_chain, neurons, contracting_convs[i])

    # Output Layer
    conv_out = Conv3D(n_labels, (1, 1, 1), activation=activation)(cnn_chain)
    # Create Model with associated input and output layers
    model = Model(inputs=[inputs], outputs=[conv_out])
    # Return model
    return model

#-----------------------------------------------------#
#                     Subroutines                     #
#-----------------------------------------------------#
# Create a contracting layer 
開發者ID:muellerdo,項目名稱:kits19.MIScnn,代碼行數:37,代碼來源:residual.py

示例14: contracting_layer

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Conv3D [as 別名]
def contracting_layer(input, neurons):
    conv1 = Conv3D(neurons, (3,3,3), activation='relu', padding='same')(input)
    conv2 = Conv3D(neurons, (3,3,3), activation='relu', padding='same')(conv1)
    conc1 = concatenate([input, conv2], axis=4)
    pool = MaxPooling3D(pool_size=(2, 2, 2))(conc1)
    return pool, conv2

# Create the middle layer between the contracting and expanding layers 
開發者ID:muellerdo,項目名稱:kits19.MIScnn,代碼行數:10,代碼來源:residual.py

示例15: middle_layer

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Conv3D [as 別名]
def middle_layer(input, neurons):
    conv_m1 = Conv3D(neurons, (3, 3, 3), activation='relu', padding='same')(input)
    conv_m2 = Conv3D(neurons, (3, 3, 3), activation='relu', padding='same')(conv_m1)
    conc1 = concatenate([input, conv_m2], axis=4)
    return conc1

# Create an expanding layer 
開發者ID:muellerdo,項目名稱:kits19.MIScnn,代碼行數:9,代碼來源:residual.py


注:本文中的keras.layers.Conv3D方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。