當前位置: 首頁>>代碼示例>>Python>>正文


Python layers.Conv2DTranspose方法代碼示例

本文整理匯總了Python中keras.layers.Conv2DTranspose方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.Conv2DTranspose方法的具體用法?Python layers.Conv2DTranspose怎麽用?Python layers.Conv2DTranspose使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.layers的用法示例。


在下文中一共展示了layers.Conv2DTranspose方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: build_mbllen

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Conv2DTranspose [as 別名]
def build_mbllen(input_shape):

    def EM(input, kernal_size, channel):
        conv_1 = Conv2D(channel, (3, 3), activation='relu', padding='same', data_format='channels_last')(input)
        conv_2 = Conv2D(channel, (kernal_size, kernal_size), activation='relu', padding='valid', data_format='channels_last')(conv_1)
        conv_3 = Conv2D(channel*2, (kernal_size, kernal_size), activation='relu', padding='valid', data_format='channels_last')(conv_2)
        conv_4 = Conv2D(channel*4, (kernal_size, kernal_size), activation='relu', padding='valid', data_format='channels_last')(conv_3)
        conv_5 = Conv2DTranspose(channel*2, (kernal_size, kernal_size), activation='relu', padding='valid', data_format='channels_last')(conv_4)
        conv_6 = Conv2DTranspose(channel, (kernal_size, kernal_size), activation='relu', padding='valid', data_format='channels_last')(conv_5)
        res = Conv2DTranspose(3, (kernal_size, kernal_size), activation='relu', padding='valid', data_format='channels_last')(conv_6)
        return res

    inputs = Input(shape=input_shape)
    FEM = Conv2D(32, (3, 3), activation='relu', padding='same', data_format='channels_last')(inputs)
    EM_com = EM(FEM, 5, 8)

    for j in range(3):
        for i in range(0, 3):
            FEM = Conv2D(32, (3, 3), activation='relu', padding='same', data_format='channels_last')(FEM)
            EM1 = EM(FEM, 5, 8)
            EM_com = Concatenate(axis=3)([EM_com, EM1])

    outputs = Conv2D(3, (1, 1), activation='relu', padding='same', data_format='channels_last')(EM_com)
    return Model(inputs, outputs) 
開發者ID:Lvfeifan,項目名稱:MBLLEN,代碼行數:26,代碼來源:Network.py

示例2: Transpose2D_block

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Conv2DTranspose [as 別名]
def Transpose2D_block(filters, stage, kernel_size=(3,3), upsample_rate=(2,2),
                      transpose_kernel_size=(4,4), use_batchnorm=False, skip=None):

    def layer(input_tensor):

        conv_name, bn_name, relu_name, up_name = handle_block_names(stage)

        x = Conv2DTranspose(filters, transpose_kernel_size, strides=upsample_rate,
                            padding='same', name=up_name, use_bias=not(use_batchnorm))(input_tensor)
        if use_batchnorm:
            x = BatchNormalization(name=bn_name+'1')(x)
        x = Activation('relu', name=relu_name+'1')(x)

        if skip is not None:
            x = Concatenate()([x, skip])

        x = ConvRelu(filters, kernel_size, use_batchnorm=use_batchnorm,
                     conv_name=conv_name + '2', bn_name=bn_name + '2', relu_name=relu_name + '2')(x)

        return x
    return layer 
開發者ID:SpaceNetChallenge,項目名稱:SpaceNet_Off_Nadir_Solutions,代碼行數:23,代碼來源:blocks.py

示例3: Conv2DTranspose

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Conv2DTranspose [as 別名]
def Conv2DTranspose(filters,
                    upsample_rate,
                    kernel_size=(4,4),
                    up_name='up',
                    **kwargs):

    #if not tuple(upsample_rate) == (2,2):
    #    raise NotImplementedError(
    #        f'Conv2DTranspose support only upsample_rate=(2, 2), got {upsample_rate}')

    def layer(input_tensor):
        x = Transpose(filters,
                      kernel_size=kernel_size,
                      strides=upsample_rate,
                      padding='same',
                      name=up_name)(input_tensor)
        return x
    return layer 
開發者ID:SpaceNetChallenge,項目名稱:SpaceNet_Off_Nadir_Solutions,代碼行數:20,代碼來源:blocks.py

示例4: Conv2DTranspose

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Conv2DTranspose [as 別名]
def Conv2DTranspose(filters,
                    upsample_rate,
                    kernel_size=(4,4),
                    up_name='up',
                    **kwargs):

    if not tuple(upsample_rate) == (2,2):
        raise NotImplementedError(
            f'Conv2DTranspose support only upsample_rate=(2, 2), got {upsample_rate}')

    def layer(input_tensor):
        x = Transpose(filters,
                      kernel_size=kernel_size,
                      strides=upsample_rate,
                      padding='same',
                      name=up_name)(input_tensor)
        return x
    return layer 
開發者ID:pubgeo,項目名稱:dfc2019,代碼行數:20,代碼來源:blocks.py

示例5: fsrcnn

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Conv2DTranspose [as 別名]
def fsrcnn(x, d=56, s=12, m=4, scale=3):
    """Build an FSRCNN model.

    See https://arxiv.org/abs/1608.00367
    """
    model = Sequential()
    model.add(InputLayer(input_shape=x.shape[-3:]))
    c = x.shape[-1]
    f = [5, 1] + [3] * m + [1]
    n = [d, s] + [s] * m + [d]
    for ni, fi in zip(n, f):
        model.add(Conv2D(ni, fi, padding='same',
                         kernel_initializer='he_normal', activation='relu'))
    model.add(Conv2DTranspose(c, 9, strides=scale, padding='same',
                              kernel_initializer='he_normal'))
    return model 
開發者ID:qobilidop,項目名稱:srcnn,代碼行數:18,代碼來源:models.py

示例6: nsfsrcnn

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Conv2DTranspose [as 別名]
def nsfsrcnn(x, d=56, s=12, m=4, scale=3, pos=1):
    """Build an FSRCNN model, but change deconv position.

    See https://arxiv.org/abs/1608.00367
    """
    model = Sequential()
    model.add(InputLayer(input_shape=x.shape[-3:]))
    c = x.shape[-1]
    f1 = [5, 1] + [3] * pos
    n1 = [d, s] + [s] * pos
    f2 = [3] * (m - pos - 1) + [1]
    n2 = [s] * (m - pos - 1) + [d]
    f3 = 9
    n3 = c
    for ni, fi in zip(n1, f1):
        model.add(Conv2D(ni, fi, padding='same',
                         kernel_initializer='he_normal', activation='relu'))
    model.add(Conv2DTranspose(s, 3, strides=scale, padding='same',
                              kernel_initializer='he_normal'))
    for ni, fi in zip(n2, f2):
        model.add(Conv2D(ni, fi, padding='same',
                         kernel_initializer='he_normal', activation='relu'))
    model.add(Conv2D(n3, f3, padding='same',
                         kernel_initializer='he_normal'))
    return model 
開發者ID:qobilidop,項目名稱:srcnn,代碼行數:27,代碼來源:models.py

示例7: classification_branch_wrapper

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Conv2DTranspose [as 別名]
def classification_branch_wrapper(self, input, softmax_trainable=False):
        x = self.res_block(input, filter=128, stages=9, block=4)
        # all layers before OPI
        x = Conv2D(filters=5, kernel_size=(1, 1), padding='same', name='conv2d_after_fourth_resblock',
                   kernel_regularizer=keras.regularizers.l2(self.l2r))(x)
        x = BatchNormalization(name='bn_after_fourth_resblock')(x)
        x = Activation('relu',name='relu_after_fourth_resblock')(x)
        x = Conv2DTranspose(filters=5, kernel_size=(3, 3),
                            strides=(2, 2), padding='same',
                            kernel_regularizer=keras.regularizers.l2(self.l2r),
                            name='secondlast_deconv_before_cls')(x)
        x = BatchNormalization(name='secondlast_bn_before_cls')(x)
        x = Activation('relu', name='last_relu_before_cls')(x)
        x = Conv2DTranspose(filters=5, kernel_size=(3, 3),
                            strides=(2, 2), padding='same',
                            kernel_regularizer=keras.regularizers.l2(self.l2r),
                            name='last_deconv_before_cls')(x)
        x_output = BatchNormalization(name='last_bn_before_cls')(x)
        if softmax_trainable == True:
            x_output = Activation('softmax', name='Classification_output')(x_output)
        return x_output 
開發者ID:zhuyiche,項目名稱:sfcn-opi,代碼行數:23,代碼來源:model.py

示例8: modelGenerator

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Conv2DTranspose [as 別名]
def modelGenerator(self, name):
        inputImg = Input(shape=self.latent_dim)
        # Layer 1: 1 res block
        x = self.resblk(inputImg, 256)
        # Layer 2: 2 res block
        x = self.resblk(x, 256)
        # Layer 3: 3 res block
        x = self.resblk(x, 256)
        # Layer 4:
        x = Conv2DTranspose(128, kernel_size=3, strides=2, padding='same')(x)
        x = LeakyReLU(alpha=0.01)(x)
        # Layer 5:
        x = Conv2DTranspose(64, kernel_size=3, strides=2, padding='same')(x)
        x = LeakyReLU(alpha=0.01)(x)
        # Layer 6
        x = Conv2DTranspose(self.channels, kernel_size=1, strides=1, padding='valid')(x)
        z = Activation("tanh")(x)

        return Model(inputs=inputImg, outputs=z, name=name) 
開發者ID:simontomaskarlsson,項目名稱:GAN-MRI,代碼行數:21,代碼來源:UNIT.py

示例9: model_3

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Conv2DTranspose [as 別名]
def model_3():

    input_layer = Input(shape=(224,224,3))
    from keras.layers import Conv2DTranspose as DeConv
    resnet = ResNet50(include_top=False, weights="imagenet")
    resnet.trainable = False

    res_features = resnet(input_layer)

    conv = DeConv(1024, padding="valid", activation="relu", kernel_size=3)(res_features)
    conv = UpSampling2D((2,2))(conv)
    conv = DeConv(512, padding="valid", activation="relu", kernel_size=5)(conv)
    conv = UpSampling2D((2,2))(conv)
    conv = DeConv(128, padding="valid", activation="relu", kernel_size=5)(conv)
    conv = UpSampling2D((2,2))(conv)
    conv = DeConv(32, padding="valid", activation="relu", kernel_size=5)(conv)
    conv = UpSampling2D((2,2))(conv)
    conv = DeConv(8, padding="valid", activation="relu", kernel_size=5)(conv)
    conv = UpSampling2D((2,2))(conv)
    conv = DeConv(4, padding="valid", activation="relu", kernel_size=5)(conv)
    conv = DeConv(1, padding="valid", activation="sigmoid", kernel_size=5)(conv)

    model = Model(inputs=input_layer, outputs=conv)
    return model 
開發者ID:gautam678,項目名稱:Pix2Depth,代碼行數:26,代碼來源:cnn_architecture.py

示例10: get_unet_model

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Conv2DTranspose [as 別名]
def get_unet_model(input_channel_num=3, out_ch=3, start_ch=64, depth=4, inc_rate=2., activation='relu',
         dropout=0.5, batchnorm=False, maxpool=True, upconv=True, residual=False):
    def _conv_block(m, dim, acti, bn, res, do=0):
        n = Conv2D(dim, 3, activation=acti, padding='same')(m)
        n = BatchNormalization()(n) if bn else n
        n = Dropout(do)(n) if do else n
        n = Conv2D(dim, 3, activation=acti, padding='same')(n)
        n = BatchNormalization()(n) if bn else n

        return Concatenate()([m, n]) if res else n

    def _level_block(m, dim, depth, inc, acti, do, bn, mp, up, res):
        if depth > 0:
            n = _conv_block(m, dim, acti, bn, res)
            m = MaxPooling2D()(n) if mp else Conv2D(dim, 3, strides=2, padding='same')(n)
            m = _level_block(m, int(inc * dim), depth - 1, inc, acti, do, bn, mp, up, res)
            if up:
                m = UpSampling2D()(m)
                m = Conv2D(dim, 2, activation=acti, padding='same')(m)
            else:
                m = Conv2DTranspose(dim, 3, strides=2, activation=acti, padding='same')(m)
            n = Concatenate()([n, m])
            m = _conv_block(n, dim, acti, bn, res)
        else:
            m = _conv_block(m, dim, acti, bn, res, do)

        return m

    i = Input(shape=(None, None, input_channel_num))
    o = _level_block(i, start_ch, depth, inc_rate, activation, dropout, batchnorm, maxpool, upconv, residual)
    o = Conv2D(out_ch, 1)(o)
    model = Model(inputs=i, outputs=o)

    return model 
開發者ID:zxq2233,項目名稱:n2n-watermark-remove,代碼行數:36,代碼來源:model.py

示例11: build_REDNet

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Conv2DTranspose [as 別名]
def build_REDNet(nb_layers, input_size, nb_filters=32, k_size=3, dropout=0, strides=1, every=1):
    # -> CONV/FC -> BatchNorm -> ReLu(or other activation) -> Dropout -> CONV/FC ->  # https://arxiv.org/pdf/1502.03167.pdf
    input_img = Input(shape=(input_size, input_size, 1))
    x = input_img

    if K.image_data_format() == 'channels_last':
        bn_axis = 3
    else:
        bn_axis = 1

    encoderLayers = [None] * nb_layers

    for i in range(nb_layers):
        x = Conv2D(nb_filters, kernel_size=k_size, strides=strides, padding='same')(x)
        x = BatchNormalization(axis=bn_axis)(x)
        x = Activation('relu')(x)
        if dropout > 0:
            x = Dropout(dropout)(x)
        encoderLayers[i] = x

    encoded = x

    for i in range(nb_layers):
        ind = nb_layers - i - 1
        x = layers.add([x, encoderLayers[ind]])

        x = Conv2DTranspose(nb_filters, kernel_size=k_size, strides=strides, padding='same')(x)
        x = BatchNormalization(axis=bn_axis)(x)
        x = Activation('relu')(x)
        if dropout > 0:
            x = Dropout(dropout)(x)

    decoded = Conv2D(1, kernel_size=k_size, strides=1, padding='same', activation='sigmoid')(x)

    autoencoder = Model(input_img, decoded)

    return autoencoder, encoded, decoded 
開發者ID:ajgallego,項目名稱:document-image-binarization,代碼行數:39,代碼來源:utilModelREDNet.py

示例12: deconv

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Conv2DTranspose [as 別名]
def deconv(input, channels, kernel_size, scale):

        return Conv2DTranspose(channels, kernel_size=kernel_size, strides=scale, padding='same')(input) 
開發者ID:drmaj,項目名稱:UnDeepVO,代碼行數:5,代碼來源:autoencoder_model.py

示例13: uk

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Conv2DTranspose [as 別名]
def uk(self, x, k):
        # (up sampling followed by 1x1 convolution <=> fractional-strided 1/2)
        if self.use_resize_convolution:
            x = UpSampling2D(size=(2, 2))(x)  # Nearest neighbor upsampling
            x = ReflectionPadding2D((1, 1))(x)
            x = Conv2D(filters=k, kernel_size=3, strides=1, padding='valid')(x)
        else:
            x = Conv2DTranspose(filters=k, kernel_size=3, strides=2, padding='same')(x)  # this matches fractinoally stided with stride 1/2
        x = self.normalization(axis=3, center=True, epsilon=1e-5)(x, training=True)
        x = Activation('relu')(x)
        return x

#===============================================================================
# Models 
開發者ID:simontomaskarlsson,項目名稱:CycleGAN-Keras,代碼行數:16,代碼來源:model.py

示例14: upsampling_block

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Conv2DTranspose [as 別名]
def upsampling_block(self, input_tensor, skip_tensor, filters, padding='valid',
						 batchnorm=False, dropout=0.0):
		x = Conv2DTranspose(filters, kernel_size=(2,2), strides=(2,2))(input_tensor)

		# compute amount of cropping needed for skip_tensor
		_, x_height, x_width, _ = K.int_shape(x)
		_, s_height, s_width, _ = K.int_shape(skip_tensor)
		h_crop = s_height - x_height
		w_crop = s_width - x_width
		assert h_crop >= 0
		assert w_crop >= 0
		if h_crop == 0 and w_crop == 0:
			y = skip_tensor
		else:
			cropping = ((h_crop//2, h_crop - h_crop//2), (w_crop//2, w_crop - w_crop//2))
			y = Cropping2D(cropping=cropping)(skip_tensor)

		x = Concatenate()([x, y])

		# no dilation in upsampling convolutions
		x = Conv2D(filters, kernel_size=(3,3), padding=padding)(x)
		x = BatchNormalization()(x) if batchnorm else x
		x = Activation('relu')(x)
		x = Dropout(dropout)(x) if dropout > 0 else x

		x = Conv2D(filters, kernel_size=(3,3), padding=padding)(x)
		x = BatchNormalization()(x) if batchnorm else x
		x = Activation('relu')(x)
		x = Dropout(dropout)(x) if dropout > 0 else x

		return x 
開發者ID:jackkwok,項目名稱:neural-road-inspector,代碼行數:33,代碼來源:unet.py

示例15: TransitionUp

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Conv2DTranspose [as 別名]
def TransitionUp(self,filters,input_shape,output_shape):
		model = self.model
		model.add(Conv2DTranspose(filters,  kernel_size=(3, 3), strides=(2, 2),
											padding='same',
											output_shape=output_shape,
											input_shape=input_shape,
											kernel_initializer="he_uniform",
											data_format='channels_last')) 
開發者ID:jackkwok,項目名稱:neural-road-inspector,代碼行數:10,代碼來源:tiramisu.py


注:本文中的keras.layers.Conv2DTranspose方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。