當前位置: 首頁>>代碼示例>>Python>>正文


Python layers.Conv2D方法代碼示例

本文整理匯總了Python中keras.layers.Conv2D方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.Conv2D方法的具體用法?Python layers.Conv2D怎麽用?Python layers.Conv2D使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.layers的用法示例。


在下文中一共展示了layers.Conv2D方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: build_cae_model

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Conv2D [as 別名]
def build_cae_model(height=32, width=32, channel=3):
    """
    build convolutional autoencoder model
    """
    input_img = Input(shape=(height, width, channel))

    # encoder
    net = Conv2D(16, (3, 3), activation='relu', padding='same')(input_img)
    net = MaxPooling2D((2, 2), padding='same')(net)
    net = Conv2D(8, (3, 3), activation='relu', padding='same')(net)
    net = MaxPooling2D((2, 2), padding='same')(net)
    net = Conv2D(4, (3, 3), activation='relu', padding='same')(net)
    encoded = MaxPooling2D((2, 2), padding='same', name='enc')(net)

    # decoder
    net = Conv2D(4, (3, 3), activation='relu', padding='same')(encoded)
    net = UpSampling2D((2, 2))(net)
    net = Conv2D(8, (3, 3), activation='relu', padding='same')(net)
    net = UpSampling2D((2, 2))(net)
    net = Conv2D(16, (3, 3), activation='relu', padding='same')(net)
    net = UpSampling2D((2, 2))(net)
    decoded = Conv2D(channel, (3, 3), activation='sigmoid', padding='same')(net)

    return Model(input_img, decoded) 
開發者ID:hiram64,項目名稱:ocsvm-anomaly-detection,代碼行數:26,代碼來源:model.py

示例2: d_block

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Conv2D [as 別名]
def d_block(inp, fil, p = True):

    skip = Conv2D(fil, 1, padding = 'same', kernel_initializer = 'he_normal')(inp)

    out = Conv2D(filters = fil, kernel_size = 3, padding = 'same', kernel_initializer = 'he_normal')(inp)
    out = LeakyReLU(0.2)(out)

    out = Conv2D(filters = fil, kernel_size = 3, padding = 'same', kernel_initializer = 'he_normal')(out)
    out = LeakyReLU(0.2)(out)

    out = Conv2D(fil, 1, padding = 'same', kernel_initializer = 'he_normal')(out)

    out = add([out, skip])
    out = LeakyReLU(0.2)(out)

    if p:
        out = AveragePooling2D()(out)

    return out 
開發者ID:manicman1999,項目名稱:Keras-BiGAN,代碼行數:21,代碼來源:bigan.py

示例3: g_block

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Conv2D [as 別名]
def g_block(inp, fil, u = True):

    if u:
        out = UpSampling2D(interpolation = 'bilinear')(inp)
    else:
        out = Activation('linear')(inp)

    skip = Conv2D(fil, 1, padding = 'same', kernel_initializer = 'he_normal')(out)

    out = Conv2D(filters = fil, kernel_size = 3, padding = 'same', kernel_initializer = 'he_normal')(out)
    out = LeakyReLU(0.2)(out)

    out = Conv2D(filters = fil, kernel_size = 3, padding = 'same', kernel_initializer = 'he_normal')(out)
    out = LeakyReLU(0.2)(out)

    out = Conv2D(fil, 1, padding = 'same', kernel_initializer = 'he_normal')(out)

    out = add([out, skip])
    out = LeakyReLU(0.2)(out)

    return out 
開發者ID:manicman1999,項目名稱:Keras-BiGAN,代碼行數:23,代碼來源:bigan.py

示例4: build_model

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Conv2D [as 別名]
def build_model(x_train, num_classes):
        # Reset default graph. Keras leaves old ops in the graph,
        # which are ignored for execution but clutter graph
        # visualization in TensorBoard.
        tf.reset_default_graph()

        inputs = KL.Input(shape=x_train.shape[1:], name="input_image")
        x = KL.Conv2D(32, (3, 3), activation='relu', padding="same",
                      name="conv1")(inputs)
        x = KL.Conv2D(64, (3, 3), activation='relu', padding="same",
                      name="conv2")(x)
        x = KL.MaxPooling2D(pool_size=(2, 2), name="pool1")(x)
        x = KL.Flatten(name="flat1")(x)
        x = KL.Dense(128, activation='relu', name="dense1")(x)
        x = KL.Dense(num_classes, activation='softmax', name="dense2")(x)

        return KM.Model(inputs, x, "digit_classifier_model")

    # Load MNIST Data 
開發者ID:dataiku,項目名稱:dataiku-contrib,代碼行數:21,代碼來源:parallel_model.py

示例5: conv2d

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Conv2D [as 別名]
def conv2d(h_num_filters, h_filter_width, h_stride, h_use_bias):

    def compile_fn(di, dh):
        layer = layers.Conv2D(dh['num_filters'], (dh['filter_width'],) * 2,
                              strides=(dh['stride'],) * 2,
                              use_bias=dh['use_bias'],
                              padding='SAME')

        def fn(di):
            return {'out': layer(di['in'])}

        return fn

    return siso_keras_module(
        'Conv2D', compile_fn, {
            'num_filters': h_num_filters,
            'filter_width': h_filter_width,
            'stride': h_stride,
            'use_bias': h_use_bias,
        }) 
開發者ID:negrinho,項目名稱:deep_architect,代碼行數:22,代碼來源:keras_ops.py

示例6: InceptionLayer

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Conv2D [as 別名]
def InceptionLayer(self, a, b, c, d):
        def func(x):
            x1 = Conv2D(a, (1, 1), padding='same', activation='relu')(x)
            
            x2 = Conv2D(b, (1, 1), padding='same', activation='relu')(x)
            x2 = Conv2D(b, (3, 3), padding='same', activation='relu')(x2)
            
            x3 = Conv2D(c, (1, 1), padding='same', activation='relu')(x)
            x3 = Conv2D(c, (3, 3), dilation_rate = 2, strides = 1, padding='same', activation='relu')(x3)
            
            x4 = Conv2D(d, (1, 1), padding='same', activation='relu')(x)
            x4 = Conv2D(d, (3, 3), dilation_rate = 3, strides = 1, padding='same', activation='relu')(x4)

            y = Concatenate(axis = -1)([x1, x2, x3, x4])
            
            return y
        return func 
開發者ID:DariusAf,項目名稱:MesoNet,代碼行數:19,代碼來源:classifiers.py

示例7: _conv2d_same

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Conv2D [as 別名]
def _conv2d_same(x, filters, prefix, stride=1, kernel_size=3, rate=1):
    # 計算padding的數量,hw是否需要收縮
    if stride == 1:
        return Conv2D(filters,
                      (kernel_size, kernel_size),
                      strides=(stride, stride),
                      padding='same', use_bias=False,
                      dilation_rate=(rate, rate),
                      name=prefix)(x)
    else:
        kernel_size_effective = kernel_size + (kernel_size - 1) * (rate - 1)
        pad_total = kernel_size_effective - 1
        pad_beg = pad_total // 2
        pad_end = pad_total - pad_beg
        x = ZeroPadding2D((pad_beg, pad_end))(x)
        return Conv2D(filters,
                      (kernel_size, kernel_size),
                      strides=(stride, stride),
                      padding='valid', use_bias=False,
                      dilation_rate=(rate, rate),
                      name=prefix)(x) 
開發者ID:bubbliiiing,項目名稱:Semantic-Segmentation,代碼行數:23,代碼來源:Xception.py

示例8: DCGAN_discriminator

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Conv2D [as 別名]
def DCGAN_discriminator():
    nb_filters = 64
    nb_conv = int(np.floor(np.log(128) / np.log(2)))
    list_filters = [nb_filters * min(8, (2 ** i)) for i in range(nb_conv)]

    input_img = Input(shape=(128, 128, 3))
    x = Conv2D(list_filters[0], (3, 3), strides=(2, 2), name="disc_conv2d_1", padding="same")(input_img)
    x = BatchNormalization(axis=-1)(x)
    x = LeakyReLU(0.2)(x)
    # Next convs
    for i, f in enumerate(list_filters[1:]):
        name = "disc_conv2d_%s" % (i + 2)
        x = Conv2D(f, (3, 3), strides=(2, 2), name=name, padding="same")(x)
        x = BatchNormalization(axis=-1)(x)
        x = LeakyReLU(0.2)(x)

    x_flat = Flatten()(x)
    x_out = Dense(1, activation="sigmoid", name="disc_dense")(x_flat)
    discriminator_model = Model(inputs=input_img, outputs=[x_out])
    return discriminator_model 
開發者ID:kirumang,項目名稱:Pix2Pose,代碼行數:22,代碼來源:ae_model.py

示例9: _initial_conv_block_inception

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Conv2D [as 別名]
def _initial_conv_block_inception(input, initial_conv_filters, weight_decay=5e-4):
    ''' Adds an initial conv block, with batch norm and relu for the DPN
    Args:
        input: input tensor
        initial_conv_filters: number of filters for initial conv block
        weight_decay: weight decay factor
    Returns: a keras tensor
    '''
    channel_axis = 1 if K.image_data_format() == 'channels_first' else -1

    x = Conv2D(initial_conv_filters, (7, 7), padding='same', use_bias=False, kernel_initializer='he_normal',
               kernel_regularizer=l2(weight_decay), strides=(2, 2))(input)
    x = BatchNormalization(axis=channel_axis)(x)
    x = Activation('relu')(x)

    x = MaxPooling2D((3, 3), strides=(2, 2), padding='same')(x)

    return x 
開發者ID:titu1994,項目名稱:Keras-DualPathNetworks,代碼行數:20,代碼來源:dual_path_network.py

示例10: _bn_relu_conv_block

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Conv2D [as 別名]
def _bn_relu_conv_block(input, filters, kernel=(3, 3), stride=(1, 1), weight_decay=5e-4):
    ''' Adds a Batchnorm-Relu-Conv block for DPN
    Args:
        input: input tensor
        filters: number of output filters
        kernel: convolution kernel size
        stride: stride of convolution
    Returns: a keras tensor
    '''
    channel_axis = 1 if K.image_data_format() == 'channels_first' else -1

    x = Conv2D(filters, kernel, padding='same', use_bias=False, kernel_initializer='he_normal',
               kernel_regularizer=l2(weight_decay), strides=stride)(input)
    x = BatchNormalization(axis=channel_axis)(x)
    x = Activation('relu')(x)
    return x 
開發者ID:titu1994,項目名稱:Keras-DualPathNetworks,代碼行數:18,代碼來源:dual_path_network.py

示例11: _conv_block

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Conv2D [as 別名]
def _conv_block(inp, convs, skip=True):
  x = inp
  count = 0
  len_convs = len(convs)
  for conv in convs:
    if count == (len_convs - 2) and skip:
      skip_connection = x
    count += 1
    if conv['stride'] > 1: x = ZeroPadding2D(((1,0),(1,0)))(x) # peculiar padding as darknet prefer left and top
    x = Conv2D(conv['filter'],
           conv['kernel'],
           strides=conv['stride'],
           padding='valid' if conv['stride'] > 1 else 'same', # peculiar padding as darknet prefer left and top
           name='conv_' + str(conv['layer_idx']),
           use_bias=False if conv['bnorm'] else True)(x)
    if conv['bnorm']: x = BatchNormalization(epsilon=0.001, name='bnorm_' + str(conv['layer_idx']))(x)
    if conv['leaky']: x = LeakyReLU(alpha=0.1, name='leaky_' + str(conv['layer_idx']))(x)
  return add([skip_connection, x]) if skip else x


#SPP block uses three pooling layers of sizes [5, 9, 13] with strides one and all outputs together with the input are concatenated to be fed
  #to the FC block 
開發者ID:produvia,項目名稱:ai-platform,代碼行數:24,代碼來源:yolov3_weights_to_keras.py

示例12: conv_2d

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Conv2D [as 別名]
def conv_2d(filters, kernel_shape, strides, padding, input_shape=None):
    """
    Defines the right convolutional layer according to the
    version of Keras that is installed.
    :param filters: (required integer) the dimensionality of the output
                    space (i.e. the number output of filters in the
                    convolution)
    :param kernel_shape: (required tuple or list of 2 integers) specifies
                         the strides of the convolution along the width and
                         height.
    :param padding: (required string) can be either 'valid' (no padding around
                    input or feature map) or 'same' (pad to ensure that the
                    output feature map size is identical to the layer input)
    :param input_shape: (optional) give input shape if this is the first
                        layer of the model
    :return: the Keras layer
    """
    if LooseVersion(keras.__version__) >= LooseVersion('2.0.0'):
        if input_shape is not None:
            return Conv2D(filters=filters, kernel_size=kernel_shape,
                          strides=strides, padding=padding,
                          input_shape=input_shape)
        else:
            return Conv2D(filters=filters, kernel_size=kernel_shape,
                          strides=strides, padding=padding)
    else:
        if input_shape is not None:
            return Convolution2D(filters, kernel_shape[0], kernel_shape[1],
                                 subsample=strides, border_mode=padding,
                                 input_shape=input_shape)
        else:
            return Convolution2D(filters, kernel_shape[0], kernel_shape[1],
                                 subsample=strides, border_mode=padding) 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:35,代碼來源:utils_keras.py

示例13: ss_bt

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Conv2D [as 別名]
def ss_bt(self, x, dilation, strides=(1, 1), padding='same'):
        x1, x2 = self.channel_split(x)
        filters = (int(x.shape[-1]) // self.groups)
        x1 = layers.Conv2D(filters, kernel_size=(3, 1), strides=strides, padding=padding)(x1)
        x1 = layers.Activation('relu')(x1)
        x1 = layers.Conv2D(filters, kernel_size=(1, 3), strides=strides, padding=padding)(x1)
        x1 = layers.BatchNormalization()(x1)
        x1 = layers.Activation('relu')(x1)
        x1 = layers.Conv2D(filters, kernel_size=(3, 1), strides=strides, padding=padding, dilation_rate=(dilation, 1))(
            x1)
        x1 = layers.Activation('relu')(x1)
        x1 = layers.Conv2D(filters, kernel_size=(1, 3), strides=strides, padding=padding, dilation_rate=(1, dilation))(
            x1)
        x1 = layers.BatchNormalization()(x1)
        x1 = layers.Activation('relu')(x1)

        x2 = layers.Conv2D(filters, kernel_size=(1, 3), strides=strides, padding=padding)(x2)
        x2 = layers.Activation('relu')(x2)
        x2 = layers.Conv2D(filters, kernel_size=(3, 1), strides=strides, padding=padding)(x2)
        x2 = layers.BatchNormalization()(x2)
        x2 = layers.Activation('relu')(x2)
        x2 = layers.Conv2D(filters, kernel_size=(1, 3), strides=strides, padding=padding, dilation_rate=(1, dilation))(
            x2)
        x2 = layers.Activation('relu')(x2)
        x2 = layers.Conv2D(filters, kernel_size=(3, 1), strides=strides, padding=padding, dilation_rate=(dilation, 1))(
            x2)
        x2 = layers.BatchNormalization()(x2)
        x2 = layers.Activation('relu')(x2)
        x_concat = layers.concatenate([x1, x2], axis=-1)
        x_add = layers.add([x, x_concat])
        output = self.channel_shuffle(x_add)
        return output 
開發者ID:JACKYLUO1991,項目名稱:Face-skin-hair-segmentaiton-and-skin-color-evaluation,代碼行數:34,代碼來源:lednet.py

示例14: down_sample

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Conv2D [as 別名]
def down_sample(self, x, filters):
        x_filters = int(x.shape[-1])
        x_conv = layers.Conv2D(filters - x_filters, kernel_size=3, strides=(2, 2), padding='same')(x)
        x_pool = layers.MaxPool2D()(x)
        x = layers.concatenate([x_conv, x_pool], axis=-1)
        x = layers.BatchNormalization()(x)
        x = layers.Activation('relu')(x)
        return x 
開發者ID:JACKYLUO1991,項目名稱:Face-skin-hair-segmentaiton-and-skin-color-evaluation,代碼行數:10,代碼來源:lednet.py

示例15: apn_module

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Conv2D [as 別名]
def apn_module(self, x):

        def right(x):
            x = layers.AveragePooling2D()(x)
            x = layers.Conv2D(self.classes, kernel_size=1, padding='same')(x)
            x = layers.BatchNormalization()(x)
            x = layers.Activation('relu')(x)
            x = layers.UpSampling2D(interpolation='bilinear')(x)
            return x

        def conv(x, filters, kernel_size, stride):
            x = layers.Conv2D(filters, kernel_size=kernel_size, strides=(stride, stride), padding='same')(x)
            x = layers.BatchNormalization()(x)
            x = layers.Activation('relu')(x)
            return x

        x_7 = conv(x, int(x.shape[-1]), 7, stride=2)
        x_5 = conv(x_7, int(x.shape[-1]), 5, stride=2)
        x_3 = conv(x_5, int(x.shape[-1]), 3, stride=2)

        x_3_1 = conv(x_3, self.classes, 3, stride=1)
        x_3_1_up = layers.UpSampling2D(interpolation='bilinear')(x_3_1)
        x_5_1 = conv(x_5, self.classes, 5, stride=1)
        x_3_5 = layers.add([x_5_1, x_3_1_up])
        x_3_5_up = layers.UpSampling2D(interpolation='bilinear')(x_3_5)
        x_7_1 = conv(x_7, self.classes, 3, stride=1)
        x_3_5_7 = layers.add([x_7_1, x_3_5_up])
        x_3_5_7_up = layers.UpSampling2D(interpolation='bilinear')(x_3_5_7)

        x_middle = conv(x, self.classes, 1, stride=1)
        x_middle = layers.multiply([x_3_5_7_up, x_middle])

        x_right = right(x)
        x_middle = layers.add([x_middle, x_right])
        return x_middle 
開發者ID:JACKYLUO1991,項目名稱:Face-skin-hair-segmentaiton-and-skin-color-evaluation,代碼行數:37,代碼來源:lednet.py


注:本文中的keras.layers.Conv2D方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。