本文整理匯總了Python中keras.layers.Conv1D方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.Conv1D方法的具體用法?Python layers.Conv1D怎麽用?Python layers.Conv1D使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類keras.layers
的用法示例。
在下文中一共展示了layers.Conv1D方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: create_model
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Conv1D [as 別名]
def create_model(time_window_size, metric):
model = Sequential()
model.add(Conv1D(filters=256, kernel_size=5, padding='same', activation='relu',
input_shape=(time_window_size, 1)))
model.add(MaxPooling1D(pool_size=4))
model.add(LSTM(64))
model.add(Dense(units=time_window_size, activation='linear'))
model.compile(optimizer='adam', loss='mean_squared_error', metrics=[metric])
# model.compile(optimizer='adam', loss='mean_squared_error', metrics=[metric])
# model.compile(optimizer="sgd", loss="mse", metrics=[metric])
print(model.summary())
return model
示例2: CausalCNN
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Conv1D [as 別名]
def CausalCNN(n_filters, lr, decay, loss,
seq_len, input_features,
strides_len, kernel_size,
dilation_rates):
inputs = Input(shape=(seq_len, input_features), name='input_layer')
x=inputs
for dilation_rate in dilation_rates:
x = Conv1D(filters=n_filters,
kernel_size=kernel_size,
padding='causal',
dilation_rate=dilation_rate,
activation='linear')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
#x = Dense(7, activation='relu', name='dense_layer')(x)
outputs = Dense(3, activation='sigmoid', name='output_layer')(x)
causalcnn = Model(inputs, outputs=[outputs])
return causalcnn
示例3: create_model
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Conv1D [as 別名]
def create_model():
inputs = Input(shape=(length,), dtype='int32', name='inputs')
embedding_1 = Embedding(len(vocab), EMBED_DIM, input_length=length, mask_zero=True)(inputs)
bilstm = Bidirectional(LSTM(EMBED_DIM // 2, return_sequences=True))(embedding_1)
bilstm_dropout = Dropout(DROPOUT_RATE)(bilstm)
embedding_2 = Embedding(len(vocab), EMBED_DIM, input_length=length)(inputs)
con = Conv1D(filters=FILTERS, kernel_size=2 * HALF_WIN_SIZE + 1, padding='same')(embedding_2)
con_d = Dropout(DROPOUT_RATE)(con)
dense_con = TimeDistributed(Dense(DENSE_DIM))(con_d)
rnn_cnn = concatenate([bilstm_dropout, dense_con], axis=2)
dense = TimeDistributed(Dense(len(chunk_tags)))(rnn_cnn)
crf = CRF(len(chunk_tags), sparse_target=True)
crf_output = crf(dense)
model = Model(input=[inputs], output=[crf_output])
model.compile(loss=crf.loss_function, optimizer=Adam(), metrics=[crf.accuracy])
return model
示例4: ann_model
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Conv1D [as 別名]
def ann_model(input_shape):
inp = Input(shape=input_shape, name='mfcc_in')
model = inp
model = Conv1D(filters=12, kernel_size=(3), activation='relu')(model)
model = Conv1D(filters=12, kernel_size=(3), activation='relu')(model)
model = Flatten()(model)
model = Dense(56)(model)
model = Activation('relu')(model)
model = BatchNormalization()(model)
model = Dropout(0.2)(model)
model = Dense(28)(model)
model = Activation('relu')(model)
model = BatchNormalization()(model)
model = Dense(1)(model)
model = Activation('sigmoid')(model)
model = Model(inp, model)
return model
示例5: DiscriminatorConv
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Conv1D [as 別名]
def DiscriminatorConv(V, E, filter_sizes, num_filters, dropout):
'''
Another Discriminator model, currently unused because keras don't support
masking for Conv1D and it does huge influence on training.
# Arguments:
V: int, Vocabrary size
E: int, Embedding size
filter_sizes: list of int, list of each Conv1D filter sizes
num_filters: list of int, list of each Conv1D num of filters
dropout: float
# Returns:
discriminator: keras model
input: word ids, shape = (B, T)
output: probability of true data or not, shape = (B, 1)
'''
input = Input(shape=(None,), dtype='int32', name='Input') # (B, T)
out = Embedding(V, E, name='Embedding')(input) # (B, T, E)
out = VariousConv1D(out, filter_sizes, num_filters)
out = Highway(out, num_layers=1)
out = Dropout(dropout, name='Dropout')(out)
out = Dense(1, activation='sigmoid', name='FC')(out)
discriminator = Model(input, out)
return discriminator
示例6: VariousConv1D
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Conv1D [as 別名]
def VariousConv1D(x, filter_sizes, num_filters, name_prefix=''):
'''
Layer wrapper function for various filter sizes Conv1Ds
# Arguments:
x: tensor, shape = (B, T, E)
filter_sizes: list of int, list of each Conv1D filter sizes
num_filters: list of int, list of each Conv1D num of filters
name_prefix: str, layer name prefix
# Returns:
out: tensor, shape = (B, sum(num_filters))
'''
conv_outputs = []
for filter_size, n_filter in zip(filter_sizes, num_filters):
conv_name = '{}VariousConv1D/Conv1D/filter_size_{}'.format(name_prefix, filter_size)
pooling_name = '{}VariousConv1D/MaxPooling/filter_size_{}'.format(name_prefix, filter_size)
conv_out = Conv1D(n_filter, filter_size, name=conv_name)(x) # (B, time_steps, n_filter)
conv_out = GlobalMaxPooling1D(name=pooling_name)(conv_out) # (B, n_filter)
conv_outputs.append(conv_out)
concatenate_name = '{}VariousConv1D/Concatenate'.format(name_prefix)
out = Concatenate(name=concatenate_name)(conv_outputs)
return out
示例7: construct_model
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Conv1D [as 別名]
def construct_model(classe_nums):
model = Sequential()
model.add(
Conv1D(filters=256, kernel_size=3, strides=1, activation='relu', input_shape=(99, 40), name='block1_conv1'))
model.add(MaxPool1D(pool_size=2, name='block1_pool1'))
model.add(BatchNormalization(momentum=0.9, epsilon=1e-5, axis=1))
model.add(Conv1D(filters=256, kernel_size=3, strides=1, activation='relu', name='block1_conv2'))
model.add(MaxPool1D(pool_size=2, name='block1_pool2'))
model.add(Flatten(name='block1_flat1'))
model.add(Dropout(0.5, name='block1_drop1'))
model.add(Dense(512, activation='relu', name='block2_dense2'))
model.add(MaxoutDense(512, nb_feature=4, name="block2_maxout2"))
model.add(Dropout(0.5, name='block2_drop2'))
model.add(Dense(512, activation='relu', name='block2_dense3', kernel_regularizer=l2(1e-4)))
model.add(MaxoutDense(512, nb_feature=4, name="block2_maxout3"))
model.add(Dense(classe_nums, activation='softmax', name="predict"))
# plot_model(model, to_file='model_struct.png', show_shapes=True, show_layer_names=False)
model.summary()
示例8: shortcut_pool
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Conv1D [as 別名]
def shortcut_pool(inputs, output, filters=256, pool_type='max', shortcut=True):
"""
ResNet(shortcut連接|skip連接|residual連接),
這裏是用shortcut連接. 恒等映射, block+f(block)
再加上 downsampling實現
參考: https://github.com/zonetrooper32/VDCNN/blob/keras_version/vdcnn.py
:param inputs: tensor
:param output: tensor
:param filters: int
:param pool_type: str, 'max'、'k-max' or 'conv' or other
:param shortcut: boolean
:return: tensor
"""
if shortcut:
conv_2 = Conv1D(filters=filters, kernel_size=1, strides=2, padding='SAME')(inputs)
conv_2 = BatchNormalization()(conv_2)
output = downsampling(output, pool_type=pool_type)
out = Add()([output, conv_2])
else:
out = ReLU(inputs)
out = downsampling(out, pool_type=pool_type)
if pool_type is not None: # filters翻倍
out = Conv1D(filters=filters*2, kernel_size=1, strides=1, padding='SAME')(out)
out = BatchNormalization()(out)
return out
示例9: downsampling
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Conv1D [as 別名]
def downsampling(inputs, pool_type='max'):
"""
In addition, downsampling with stride 2 essentially doubles the effective coverage
(i.e., coverage in the original document) of the convolution kernel;
therefore, after going through downsampling L times,
associations among words within a distance in the order of 2L can be represented.
Thus, deep pyramid CNN is computationally efficient for representing long-range associations
and so more global information.
參考: https://github.com/zonetrooper32/VDCNN/blob/keras_version/vdcnn.py
:param inputs: tensor,
:param pool_type: str, select 'max', 'k-max' or 'conv'
:return: tensor,
"""
if pool_type == 'max':
output = MaxPooling1D(pool_size=3, strides=2, padding='SAME')(inputs)
elif pool_type == 'k-max':
output = k_max_pooling(top_k=int(K.int_shape(inputs)[1]/2))(inputs)
elif pool_type == 'conv':
output = Conv1D(kernel_size=3, strides=2, padding='SAME')(inputs)
else:
output = MaxPooling1D(pool_size=3, strides=2, padding='SAME')(inputs)
return output
示例10: model_lstm
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Conv1D [as 別名]
def model_lstm(input_shape):
inp = Input(shape=input_shape)
model = inp
if input_shape[0] > 2: model = Conv1D(filters=24, kernel_size=(3), activation='relu')(model)
# if input_shape[0] > 0: model = TimeDistributed(Conv1D(filters=24, kernel_size=3, activation='relu'))(model)
model = LSTM(16)(model)
model = Activation('relu')(model)
model = Dropout(0.2)(model)
model = Dense(16)(model)
model = Activation('relu')(model)
model = BatchNormalization()(model)
model = Dense(1)(model)
model = Activation('sigmoid')(model)
model = Model(inp, model)
return model
# %%
# Conv-1D architecture. Just one sample as input
示例11: cnn
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Conv1D [as 別名]
def cnn(maxlen, embed_size, recurrent_units, dropout_rate, recurrent_dropout_rate, dense_size, nb_classes):
#inp = Input(shape=(maxlen, ))
input_layer = Input(shape=(maxlen, embed_size), )
#x = Embedding(max_features, embed_size, weights=[embedding_matrix], trainable=False)(inp)
x = Dropout(dropout_rate)(input_layer)
x = Conv1D(filters=recurrent_units, kernel_size=2, padding='same', activation='relu')(x)
x = MaxPooling1D(pool_size=2)(x)
x = Conv1D(filters=recurrent_units, kernel_size=2, padding='same', activation='relu')(x)
x = MaxPooling1D(pool_size=2)(x)
x = Conv1D(filters=recurrent_units, kernel_size=2, padding='same', activation='relu')(x)
x = MaxPooling1D(pool_size=2)(x)
x = GRU(recurrent_units)(x)
x = Dropout(dropout_rate)(x)
x = Dense(dense_size, activation="relu")(x)
x = Dense(nb_classes, activation="sigmoid")(x)
model = Model(inputs=input_layer, outputs=x)
model.summary()
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
示例12: cnn2_best
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Conv1D [as 別名]
def cnn2_best(maxlen, embed_size, recurrent_units, dropout_rate, recurrent_dropout_rate, dense_size, nb_classes):
#inp = Input(shape=(maxlen, ))
input_layer = Input(shape=(maxlen, embed_size), )
#x = Embedding(max_features, embed_size, weights=[embedding_matrix], trainable=False)(inp)
x = Dropout(dropout_rate)(input_layer)
x = Conv1D(filters=recurrent_units, kernel_size=2, padding='same', activation='relu')(x)
#x = MaxPooling1D(pool_size=2)(x)
x = Conv1D(filters=recurrent_units, kernel_size=2, padding='same', activation='relu')(x)
#x = MaxPooling1D(pool_size=2)(x)
x = Conv1D(filters=recurrent_units, kernel_size=2, padding='same', activation='relu')(x)
#x = MaxPooling1D(pool_size=2)(x)
x = GRU(recurrent_units, return_sequences=False, dropout=dropout_rate,
recurrent_dropout=dropout_rate)(x)
#x = Dropout(dropout_rate)(x)
x = Dense(dense_size, activation="relu")(x)
x = Dense(nb_classes, activation="sigmoid")(x)
model = Model(inputs=input_layer, outputs=x)
model.summary()
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
示例13: cnn2
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Conv1D [as 別名]
def cnn2(maxlen, embed_size, recurrent_units, dropout_rate, recurrent_dropout_rate, dense_size, nb_classes):
#inp = Input(shape=(maxlen, ))
input_layer = Input(shape=(maxlen, embed_size), )
#x = Embedding(max_features, embed_size, weights=[embedding_matrix], trainable=False)(inp)
x = Dropout(dropout_rate)(input_layer)
x = Conv1D(filters=recurrent_units, kernel_size=2, padding='same', activation='relu')(x)
#x = MaxPooling1D(pool_size=2)(x)
x = Conv1D(filters=recurrent_units, kernel_size=2, padding='same', activation='relu')(x)
#x = MaxPooling1D(pool_size=2)(x)
x = Conv1D(filters=recurrent_units, kernel_size=2, padding='same', activation='relu')(x)
#x = MaxPooling1D(pool_size=2)(x)
x = GRU(recurrent_units, return_sequences=False, dropout=dropout_rate,
recurrent_dropout=dropout_rate)(x)
#x = Dropout(dropout_rate)(x)
x = Dense(dense_size, activation="relu")(x)
x = Dense(nb_classes, activation="sigmoid")(x)
model = Model(inputs=input_layer, outputs=x)
model.summary()
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
示例14: conv
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Conv1D [as 別名]
def conv(maxlen, embed_size, recurrent_units, dropout_rate, recurrent_dropout_rate, dense_size, nb_classes):
filter_kernels = [7, 7, 5, 5, 3, 3]
#inp = Input(shape=(maxlen, ))
input_layer = Input(shape=(maxlen, embed_size), )
#x = Embedding(max_features, embed_size, weights=[embedding_matrix], trainable=False)(inp)
conv = Conv1D(nb_filter=recurrent_units, filter_length=filter_kernels[0], border_mode='valid', activation='relu')(input_layer)
conv = MaxPooling1D(pool_length=3)(conv)
conv1 = Conv1D(nb_filter=recurrent_units, filter_length=filter_kernels[1], border_mode='valid', activation='relu')(conv)
conv1 = MaxPooling1D(pool_length=3)(conv1)
conv2 = Conv1D(nb_filter=recurrent_units, filter_length=filter_kernels[2], border_mode='valid', activation='relu')(conv1)
conv3 = Conv1D(nb_filter=recurrent_units, filter_length=filter_kernels[3], border_mode='valid', activation='relu')(conv2)
conv4 = Conv1D(nb_filter=recurrent_units, filter_length=filter_kernels[4], border_mode='valid', activation='relu')(conv3)
conv5 = Conv1D(nb_filter=recurrent_units, filter_length=filter_kernels[5], border_mode='valid', activation='relu')(conv4)
conv5 = MaxPooling1D(pool_length=3)(conv5)
conv5 = Flatten()(conv5)
z = Dropout(0.5)(Dense(dense_size, activation='relu')(conv5))
#x = GlobalMaxPool1D()(x)
x = Dense(nb_classes, activation="sigmoid")(z)
model = Model(inputs=input_layer, outputs=x)
model.summary()
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
# LSTM + conv
示例15: build_model_text_cnn
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Conv1D [as 別名]
def build_model_text_cnn(self):
######### text-cnn #########
# bert embedding
bert_inputs, bert_output = KerasBertEmbedding().bert_encode()
# text cnn
bert_output_emmbed = SpatialDropout1D(rate=self.keep_prob)(bert_output)
concat_out = []
for index, filter_size in enumerate(self.filters):
x = Conv1D(name='TextCNN_Conv1D_{}'.format(index), filters=int(self.embedding_dim/2), kernel_size=self.filters[index], padding='valid', kernel_initializer='normal', activation='relu')(bert_output_emmbed)
x = GlobalMaxPooling1D(name='TextCNN_MaxPool1D_{}'.format(index))(x)
concat_out.append(x)
x = Concatenate(axis=1)(concat_out)
x = Dropout(self.keep_prob)(x)
# 最後就是softmax
dense_layer = Dense(self.label, activation=self.activation)(x)
output_layers = [dense_layer]
self.model = Model(bert_inputs, output_layers)