本文整理匯總了Python中keras.layers.Concatenate方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.Concatenate方法的具體用法?Python layers.Concatenate怎麽用?Python layers.Concatenate使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類keras.layers
的用法示例。
在下文中一共展示了layers.Concatenate方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: build_discriminator
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Concatenate [as 別名]
def build_discriminator(self):
def d_layer(layer_input, filters, f_size=4, bn=True):
"""Discriminator layer"""
d = Conv2D(filters, kernel_size=f_size, strides=2, padding='same')(layer_input)
d = LeakyReLU(alpha=0.2)(d)
if bn:
d = BatchNormalization(momentum=0.8)(d)
return d
img_A = Input(shape=self.img_shape)
img_B = Input(shape=self.img_shape)
# Concatenate image and conditioning image by channels to produce input
combined_imgs = Concatenate(axis=-1)([img_A, img_B])
d1 = d_layer(combined_imgs, self.df, bn=False)
d2 = d_layer(d1, self.df*2)
d3 = d_layer(d2, self.df*4)
d4 = d_layer(d3, self.df*8)
validity = Conv2D(1, kernel_size=4, strides=1, padding='same')(d4)
return Model([img_A, img_B], validity)
示例2: InceptionLayer
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Concatenate [as 別名]
def InceptionLayer(self, a, b, c, d):
def func(x):
x1 = Conv2D(a, (1, 1), padding='same', activation='relu')(x)
x2 = Conv2D(b, (1, 1), padding='same', activation='relu')(x)
x2 = Conv2D(b, (3, 3), padding='same', activation='relu')(x2)
x3 = Conv2D(c, (1, 1), padding='same', activation='relu')(x)
x3 = Conv2D(c, (3, 3), dilation_rate = 2, strides = 1, padding='same', activation='relu')(x3)
x4 = Conv2D(d, (1, 1), padding='same', activation='relu')(x)
x4 = Conv2D(d, (3, 3), dilation_rate = 3, strides = 1, padding='same', activation='relu')(x4)
y = Concatenate(axis = -1)([x1, x2, x3, x4])
return y
return func
示例3: yolo_body
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Concatenate [as 別名]
def yolo_body(inputs, num_anchors, num_classes):
"""Create YOLO_V3 model CNN body in Keras."""
darknet = Model(inputs, darknet_body(inputs))
x, y1 = make_last_layers(darknet.output, 512, num_anchors*(num_classes+5))
x = compose(
DarknetConv2D_BN_Leaky(256, (1,1)),
UpSampling2D(2))(x)
x = Concatenate()([x,darknet.layers[152].output])
x, y2 = make_last_layers(x, 256, num_anchors*(num_classes+5))
x = compose(
DarknetConv2D_BN_Leaky(128, (1,1)),
UpSampling2D(2))(x)
x = Concatenate()([x,darknet.layers[92].output])
x, y3 = make_last_layers(x, 128, num_anchors*(num_classes+5))
return Model(inputs, [y1,y2,y3])
示例4: get_data_helper
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Concatenate [as 別名]
def get_data_helper(self, data, data_type):
"""
A helper function for data generation that combines different data types into a single representation
:param data: A dictionary of different data types
:param data_type: The data types defined for encoder and decoder input/output
:return: A unified data representation as a list
"""
if not data_type:
return []
d = []
for dt in data_type:
if dt == 'image':
continue
d.append(np.array(data[dt]))
# Concatenate different data points into a single representation
if len(d) > 1:
return np.concatenate(d, axis=2)
else:
return d[0]
示例5: build_mbllen
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Concatenate [as 別名]
def build_mbllen(input_shape):
def EM(input, kernal_size, channel):
conv_1 = Conv2D(channel, (3, 3), activation='relu', padding='same', data_format='channels_last')(input)
conv_2 = Conv2D(channel, (kernal_size, kernal_size), activation='relu', padding='valid', data_format='channels_last')(conv_1)
conv_3 = Conv2D(channel*2, (kernal_size, kernal_size), activation='relu', padding='valid', data_format='channels_last')(conv_2)
conv_4 = Conv2D(channel*4, (kernal_size, kernal_size), activation='relu', padding='valid', data_format='channels_last')(conv_3)
conv_5 = Conv2DTranspose(channel*2, (kernal_size, kernal_size), activation='relu', padding='valid', data_format='channels_last')(conv_4)
conv_6 = Conv2DTranspose(channel, (kernal_size, kernal_size), activation='relu', padding='valid', data_format='channels_last')(conv_5)
res = Conv2DTranspose(3, (kernal_size, kernal_size), activation='relu', padding='valid', data_format='channels_last')(conv_6)
return res
inputs = Input(shape=input_shape)
FEM = Conv2D(32, (3, 3), activation='relu', padding='same', data_format='channels_last')(inputs)
EM_com = EM(FEM, 5, 8)
for j in range(3):
for i in range(0, 3):
FEM = Conv2D(32, (3, 3), activation='relu', padding='same', data_format='channels_last')(FEM)
EM1 = EM(FEM, 5, 8)
EM_com = Concatenate(axis=3)([EM_com, EM1])
outputs = Conv2D(3, (1, 1), activation='relu', padding='same', data_format='channels_last')(EM_com)
return Model(inputs, outputs)
示例6: VariousConv1D
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Concatenate [as 別名]
def VariousConv1D(x, filter_sizes, num_filters, name_prefix=''):
'''
Layer wrapper function for various filter sizes Conv1Ds
# Arguments:
x: tensor, shape = (B, T, E)
filter_sizes: list of int, list of each Conv1D filter sizes
num_filters: list of int, list of each Conv1D num of filters
name_prefix: str, layer name prefix
# Returns:
out: tensor, shape = (B, sum(num_filters))
'''
conv_outputs = []
for filter_size, n_filter in zip(filter_sizes, num_filters):
conv_name = '{}VariousConv1D/Conv1D/filter_size_{}'.format(name_prefix, filter_size)
pooling_name = '{}VariousConv1D/MaxPooling/filter_size_{}'.format(name_prefix, filter_size)
conv_out = Conv1D(n_filter, filter_size, name=conv_name)(x) # (B, time_steps, n_filter)
conv_out = GlobalMaxPooling1D(name=pooling_name)(conv_out) # (B, n_filter)
conv_outputs.append(conv_out)
concatenate_name = '{}VariousConv1D/Concatenate'.format(name_prefix)
out = Concatenate(name=concatenate_name)(conv_outputs)
return out
示例7: model
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Concatenate [as 別名]
def model(self):
input_A = Input(shape=self.SHAPE)
input_B = Input(shape=self.SHAPE)
input_layer = Concatenate(axis=-1)([input_A, input_B])
up_layer_1 = Convolution2D(self.FS, kernel_size=4, strides=2, padding='same',activation=LeakyReLU(alpha=0.2))(input_layer)
up_layer_2 = Convolution2D(self.FS*2, kernel_size=4, strides=2, padding='same',activation=LeakyReLU(alpha=0.2))(up_layer_1)
leaky_layer_2 = BatchNormalization(momentum=0.8)(up_layer_2)
up_layer_3 = Convolution2D(self.FS*4, kernel_size=4, strides=2, padding='same',activation=LeakyReLU(alpha=0.2))(leaky_layer_2)
leaky_layer_3 = BatchNormalization(momentum=0.8)(up_layer_3)
up_layer_4 = Convolution2D(self.FS*8, kernel_size=4, strides=2, padding='same',activation=LeakyReLU(alpha=0.2))(leaky_layer_3)
leaky_layer_4 = BatchNormalization(momentum=0.8)(up_layer_4)
output_layer = Convolution2D(1, kernel_size=4, strides=1, padding='same')(leaky_layer_4)
return Model([input_A, input_B],output_layer)
示例8: creat_discriminator
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Concatenate [as 別名]
def creat_discriminator(self):
# layer 0
image_A = Input(shape=self.image_shape)
image_B = Input(shape=self.image_shape)
combined_images = Concatenate(axis=-1)([image_A, image_B])
# layer 1
d1 = Conv2D(filters=64, kernel_size=4, strides=2, padding='same')(combined_images)
d1 = LeakyReLU(alpha=0.2)(d1)
# layer 2
d2 = Conv2D(filters=128, kernel_size=4, strides=2, padding='same')(d1)
d2 = LeakyReLU(alpha=0.2)(d2)
d2 = BatchNormalization(momentum=0.8)(d2)
# layer 3
d3 = Conv2D(filters=128, kernel_size=4, strides=2, padding='same')(d2)
d3 = LeakyReLU(alpha=0.2)(d3)
d3 = BatchNormalization(momentum=0.8)(d3)
# layer 4
d4 = Conv2D(filters=128, kernel_size=4, strides=2, padding='same')(d3)
d4 = LeakyReLU(alpha=0.2)(d4)
d4 = BatchNormalization(momentum=0.8)(d4)
validity = Conv2D(1, kernel_size=4, strides=1, padding='same')(d4)
return Model([image_A, image_B], validity)
示例9: yolo_body
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Concatenate [as 別名]
def yolo_body(inputs, num_anchors, num_classes):
"""Create YOLO_V3 model CNN body in Keras."""
darknet = Model(inputs, darknet_body(inputs))
x, y1 = make_last_layers(
darknet.output, 512, num_anchors * (num_classes + 5))
x = compose(
DarknetConv2D_BN_Leaky(256, (1, 1)),
UpSampling2D(2))(x)
x = Concatenate()([x, darknet.layers[152].output])
x, y2 = make_last_layers(x, 256, num_anchors * (num_classes + 5))
x = compose(
DarknetConv2D_BN_Leaky(128, (1, 1)),
UpSampling2D(2))(x)
x = Concatenate()([x, darknet.layers[92].output])
x, y3 = make_last_layers(x, 128, num_anchors * (num_classes + 5))
return Model(inputs, [y1, y2, y3])
示例10: yolo_main
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Concatenate [as 別名]
def yolo_main(input, num_anchors, num_classes):
darknet_network = Model(input, darknet(input))
network, network_1 = last_layers(darknet_network.output, 512, num_anchors * (num_classes + 5), layer_name="last1")
network = NetworkConv2D_BN_Leaky( input=network, channels=256, kernel_size=(1,1))
network = UpSampling2D(2)(network)
network = Concatenate()([network, darknet_network.layers[152].output])
network, network_2 = last_layers(network, 256, num_anchors * (num_classes + 5), layer_name="last2")
network = NetworkConv2D_BN_Leaky(input=network, channels=128, kernel_size=(1, 1))
network = UpSampling2D(2)(network)
network = Concatenate()([network, darknet_network.layers[92].output])
network, network_3 = last_layers(network, 128, num_anchors * (num_classes + 5), layer_name="last3")
return Model(input, [network_1, network_2, network_3])
示例11: model_inputs
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Concatenate [as 別名]
def model_inputs(self, input_shape, conditions_shape=None):
"""
:param input_shape: np.array
(window_size, n_features)
:param conditions_shape: np.array
(horizon, n_features)
:return: a tuple containing:
- a list containing all the Input Layers needed by the model
- the tensor that has to be feeded to the subsequent layers of the archotecture
"""
inputs = Input(shape=input_shape, name='input')
if conditions_shape is not None:
conditions = Input(shape=conditions_shape, name='exogenous')
# pass through different filters in order for them to have = no. channels
out = Concatenate(axis=1)(
[Dense(units=128, activation='sigmoid')(inputs),
Dense(units=128, activation='tanh')(conditions)]
) # concatenate over temporal axis
return [inputs, conditions], out
return inputs, inputs
示例12: _get_model
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Concatenate [as 別名]
def _get_model(X, cat_cols, num_cols, n_uniq, n_emb, output_activation):
inputs = []
num_inputs = []
embeddings = []
for i, col in enumerate(cat_cols):
if not n_uniq[i]:
n_uniq[i] = X[col].nunique()
if not n_emb[i]:
n_emb[i] = max(MIN_EMBEDDING, 2 * int(np.log2(n_uniq[i])))
_input = Input(shape=(1,), name=col)
_embed = Embedding(input_dim=n_uniq[i], output_dim=n_emb[i], name=col + EMBEDDING_SUFFIX)(_input)
_embed = Dropout(.2)(_embed)
_embed = Reshape((n_emb[i],))(_embed)
inputs.append(_input)
embeddings.append(_embed)
if num_cols:
num_inputs = Input(shape=(len(num_cols),), name='num_inputs')
merged_input = Concatenate(axis=1)(embeddings + [num_inputs])
inputs = inputs + [num_inputs]
else:
merged_input = Concatenate(axis=1)(embeddings)
x = BatchNormalization()(merged_input)
x = Dense(128, activation='relu')(x)
x = Dropout(.5)(x)
x = BatchNormalization()(x)
x = Dense(64, activation='relu')(x)
x = Dropout(.5)(x)
x = BatchNormalization()(x)
output = Dense(1, activation=output_activation)(x)
model = Model(inputs=inputs, outputs=output)
return model, n_emb, n_uniq
示例13: build
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Concatenate [as 別名]
def build(self, input_shape):
self._validate_input_shape(input_shape)
d_k = self._d_k if self._d_k else input_shape[1][-1]
d_model = self._d_model if self._d_model else input_shape[1][-1]
d_v = self._d_v
if type(d_k) == tf.Dimension:
d_k = d_k.value
if type(d_model) == tf.Dimension:
d_model = d_model.value
self._q_layers = []
self._k_layers = []
self._v_layers = []
self._sdp_layer = ScaledDotProductAttention(return_attention=self._return_attention)
for _ in range(self._h):
self._q_layers.append(
TimeDistributed(
Dense(d_k, activation=self._activation, use_bias=False)
)
)
self._k_layers.append(
TimeDistributed(
Dense(d_k, activation=self._activation, use_bias=False)
)
)
self._v_layers.append(
TimeDistributed(
Dense(d_v, activation=self._activation, use_bias=False)
)
)
self._output = TimeDistributed(Dense(d_model))
#if self._return_attention:
# self._output = Concatenate()
示例14: __call__
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Concatenate [as 別名]
def __call__(self, x, mask=None):
if isinstance(x, (list, tuple)):
self.build([it.shape for it in x])
else:
self.build(x.shape)
q, k, v = x
outputs = []
attentions = []
for i in range(self._h):
qi = self._q_layers[i](q)
ki = self._k_layers[i](k)
vi = self._v_layers[i](v)
if self._return_attention:
output, attention = self._sdp_layer([qi, ki, vi], mask=mask)
outputs.append(output)
attentions.append(attention)
else:
output = self._sdp_layer([qi, ki, vi], mask=mask)
outputs.append(output)
concatenated_outputs = Concatenate()(outputs)
output = self._output(concatenated_outputs)
if self._return_attention:
attention = Concatenate()(attentions)
# print("attention", attention, attention.shape)
if self._return_attention:
return [output, attention]
else:
return output
# https://wanasit.github.io/attention-based-sequence-to-sequence-in-keras.html
# https://arxiv.org/pdf/1508.04025.pdf
示例15: build_generator
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import Concatenate [as 別名]
def build_generator(self):
"""U-Net Generator"""
def conv2d(layer_input, filters, f_size=4, bn=True):
"""Layers used during downsampling"""
d = Conv2D(filters, kernel_size=f_size, strides=2, padding='same')(layer_input)
d = LeakyReLU(alpha=0.2)(d)
if bn:
d = BatchNormalization(momentum=0.8)(d)
return d
def deconv2d(layer_input, skip_input, filters, f_size=4, dropout_rate=0):
"""Layers used during upsampling"""
u = UpSampling2D(size=2)(layer_input)
u = Conv2D(filters, kernel_size=f_size, strides=1, padding='same', activation='relu')(u)
if dropout_rate:
u = Dropout(dropout_rate)(u)
u = BatchNormalization(momentum=0.8)(u)
u = Concatenate()([u, skip_input])
return u
img = Input(shape=self.img_shape)
# Downsampling
d1 = conv2d(img, self.gf, bn=False)
d2 = conv2d(d1, self.gf*2)
d3 = conv2d(d2, self.gf*4)
d4 = conv2d(d3, self.gf*8)
# Upsampling
u1 = deconv2d(d4, d3, self.gf*4)
u2 = deconv2d(u1, d2, self.gf*2)
u3 = deconv2d(u2, d1, self.gf)
u4 = UpSampling2D(size=2)(u3)
output_img = Conv2D(self.channels, kernel_size=4, strides=1, padding='same', activation='tanh')(u4)
return Model(img, output_img)