當前位置: 首頁>>代碼示例>>Python>>正文


Python layers.BatchNormalization方法代碼示例

本文整理匯總了Python中keras.layers.BatchNormalization方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.BatchNormalization方法的具體用法?Python layers.BatchNormalization怎麽用?Python layers.BatchNormalization使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.layers的用法示例。


在下文中一共展示了layers.BatchNormalization方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: CausalCNN

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import BatchNormalization [as 別名]
def CausalCNN(n_filters, lr, decay, loss, 
               seq_len, input_features, 
               strides_len, kernel_size,
               dilation_rates):

    inputs = Input(shape=(seq_len, input_features), name='input_layer')   
    x=inputs
    for dilation_rate in dilation_rates:
        x = Conv1D(filters=n_filters,
               kernel_size=kernel_size, 
               padding='causal',
               dilation_rate=dilation_rate,
               activation='linear')(x) 
        x = BatchNormalization()(x)
        x = Activation('relu')(x)

    #x = Dense(7, activation='relu', name='dense_layer')(x)
    outputs = Dense(3, activation='sigmoid', name='output_layer')(x)
    causalcnn = Model(inputs, outputs=[outputs])

    return causalcnn 
開發者ID:BruceBinBoxing,項目名稱:Deep_Learning_Weather_Forecasting,代碼行數:23,代碼來源:weather_model.py

示例2: build_generator

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import BatchNormalization [as 別名]
def build_generator(self):

        model = Sequential()

        model.add(Dense(128 * 7 * 7, activation="relu", input_dim=self.latent_dim))
        model.add(Reshape((7, 7, 128)))
        model.add(BatchNormalization(momentum=0.8))
        model.add(UpSampling2D())
        model.add(Conv2D(128, kernel_size=3, padding="same"))
        model.add(Activation("relu"))
        model.add(BatchNormalization(momentum=0.8))
        model.add(UpSampling2D())
        model.add(Conv2D(64, kernel_size=3, padding="same"))
        model.add(Activation("relu"))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Conv2D(1, kernel_size=3, padding="same"))
        model.add(Activation("tanh"))

        model.summary()

        noise = Input(shape=(self.latent_dim,))
        img = model(noise)

        return Model(noise, img) 
開發者ID:eriklindernoren,項目名稱:Keras-GAN,代碼行數:26,代碼來源:sgan.py

示例3: build_discriminator

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import BatchNormalization [as 別名]
def build_discriminator(self):

        model = Sequential()

        model.add(Conv2D(64, kernel_size=3, strides=2, input_shape=self.missing_shape, padding="same"))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Conv2D(128, kernel_size=3, strides=2, padding="same"))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Conv2D(256, kernel_size=3, padding="same"))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Flatten())
        model.add(Dense(1, activation='sigmoid'))
        model.summary()

        img = Input(shape=self.missing_shape)
        validity = model(img)

        return Model(img, validity) 
開發者ID:eriklindernoren,項目名稱:Keras-GAN,代碼行數:23,代碼來源:context_encoder.py

示例4: build_generator

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import BatchNormalization [as 別名]
def build_generator(self):
        model = Sequential()

        model.add(Dense(512, input_dim=self.latent_dim))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dense(512))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dense(np.prod(self.img_shape), activation='tanh'))
        model.add(Reshape(self.img_shape))

        model.summary()

        z = Input(shape=(self.latent_dim,))
        gen_img = model(z)

        return Model(z, gen_img) 
開發者ID:eriklindernoren,項目名稱:Keras-GAN,代碼行數:20,代碼來源:bigan.py

示例5: build_generator

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import BatchNormalization [as 別名]
def build_generator(self):

        model = Sequential()

        model.add(Dense(128 * 7 * 7, activation="relu", input_dim=self.latent_dim))
        model.add(Reshape((7, 7, 128)))
        model.add(UpSampling2D())
        model.add(Conv2D(128, kernel_size=4, padding="same"))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Activation("relu"))
        model.add(UpSampling2D())
        model.add(Conv2D(64, kernel_size=4, padding="same"))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Activation("relu"))
        model.add(Conv2D(self.channels, kernel_size=4, padding="same"))
        model.add(Activation("tanh"))

        model.summary()

        noise = Input(shape=(self.latent_dim,))
        img = model(noise)

        return Model(noise, img) 
開發者ID:eriklindernoren,項目名稱:Keras-GAN,代碼行數:25,代碼來源:wgan.py

示例6: build_discriminator

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import BatchNormalization [as 別名]
def build_discriminator(self):

        def d_layer(layer_input, filters, f_size=4, bn=True):
            """Discriminator layer"""
            d = Conv2D(filters, kernel_size=f_size, strides=2, padding='same')(layer_input)
            d = LeakyReLU(alpha=0.2)(d)
            if bn:
                d = BatchNormalization(momentum=0.8)(d)
            return d

        img_A = Input(shape=self.img_shape)
        img_B = Input(shape=self.img_shape)

        # Concatenate image and conditioning image by channels to produce input
        combined_imgs = Concatenate(axis=-1)([img_A, img_B])

        d1 = d_layer(combined_imgs, self.df, bn=False)
        d2 = d_layer(d1, self.df*2)
        d3 = d_layer(d2, self.df*4)
        d4 = d_layer(d3, self.df*8)

        validity = Conv2D(1, kernel_size=4, strides=1, padding='same')(d4)

        return Model([img_A, img_B], validity) 
開發者ID:eriklindernoren,項目名稱:Keras-GAN,代碼行數:26,代碼來源:pix2pix.py

示例7: build_generator

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import BatchNormalization [as 別名]
def build_generator(self):

        model = Sequential()

        model.add(Dense(256, input_dim=self.latent_dim))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dense(512))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dense(1024))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dense(np.prod(self.img_shape), activation='tanh'))
        model.add(Reshape(self.img_shape))

        model.summary()

        noise = Input(shape=(self.latent_dim,))
        img = model(noise)

        return Model(noise, img) 
開發者ID:eriklindernoren,項目名稱:Keras-GAN,代碼行數:24,代碼來源:lsgan.py

示例8: build_generator

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import BatchNormalization [as 別名]
def build_generator(self):

        model = Sequential()

        model.add(Dense(128 * 7 * 7, activation="relu", input_dim=self.latent_dim))
        model.add(Reshape((7, 7, 128)))
        model.add(UpSampling2D())
        model.add(Conv2D(128, kernel_size=3, padding="same"))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Activation("relu"))
        model.add(UpSampling2D())
        model.add(Conv2D(64, kernel_size=3, padding="same"))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Activation("relu"))
        model.add(Conv2D(self.channels, kernel_size=3, padding="same"))
        model.add(Activation("tanh"))

        model.summary()

        noise = Input(shape=(self.latent_dim,))
        img = model(noise)

        return Model(noise, img) 
開發者ID:eriklindernoren,項目名稱:Keras-GAN,代碼行數:25,代碼來源:dcgan.py

示例9: _initial_conv_block_inception

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import BatchNormalization [as 別名]
def _initial_conv_block_inception(input, initial_conv_filters, weight_decay=5e-4):
    ''' Adds an initial conv block, with batch norm and relu for the DPN
    Args:
        input: input tensor
        initial_conv_filters: number of filters for initial conv block
        weight_decay: weight decay factor
    Returns: a keras tensor
    '''
    channel_axis = 1 if K.image_data_format() == 'channels_first' else -1

    x = Conv2D(initial_conv_filters, (7, 7), padding='same', use_bias=False, kernel_initializer='he_normal',
               kernel_regularizer=l2(weight_decay), strides=(2, 2))(input)
    x = BatchNormalization(axis=channel_axis)(x)
    x = Activation('relu')(x)

    x = MaxPooling2D((3, 3), strides=(2, 2), padding='same')(x)

    return x 
開發者ID:titu1994,項目名稱:Keras-DualPathNetworks,代碼行數:20,代碼來源:dual_path_network.py

示例10: weather_conv1D

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import BatchNormalization [as 別名]
def weather_conv1D(layers, lr, decay, loss, 
               input_len, input_features, 
               strides_len, kernel_size):
    
    inputs = Input(shape=(input_len, input_features), name='input_layer')
    for i, hidden_nums in enumerate(layers):
        if i==0:
            #inputs = BatchNormalization(name='BN_input')(inputs)
            hn = Conv1D(hidden_nums, kernel_size=kernel_size, strides=strides_len, 
                        data_format='channels_last', 
                        padding='same', activation='linear')(inputs)
            hn = BatchNormalization(name='BN_{}'.format(i))(hn)
            hn = Activation('relu')(hn)
        elif i<len(layers)-1:
            hn = Conv1D(hidden_nums, kernel_size=kernel_size, strides=strides_len,
                        data_format='channels_last', 
                        padding='same',activation='linear')(hn)
            hn = BatchNormalization(name='BN_{}'.format(i))(hn) 
            hn = Activation('relu')(hn)
        else:
            hn = Conv1D(hidden_nums, kernel_size=kernel_size, strides=strides_len,
                        data_format='channels_last', 
                        padding='same',activation='linear')(hn)
            hn = BatchNormalization(name='BN_{}'.format(i))(hn) 

    outputs = Dense(80, activation='relu', name='dense_layer')(hn)
    outputs = Dense(3, activation='tanh', name='output_layer')(outputs)

    weather_model = Model(inputs, outputs=[outputs])

    return weather_model 
開發者ID:BruceBinBoxing,項目名稱:Deep_Learning_Weather_Forecasting,代碼行數:33,代碼來源:weather_model.py

示例11: weather_fnn

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import BatchNormalization [as 別名]
def weather_fnn(layers, lr,
            decay, loss, seq_len, 
            input_features, output_features):
    
    ori_inputs = Input(shape=(seq_len, input_features), name='input_layer')
    #print(seq_len*input_features)
    conv_ = Conv1D(11, kernel_size=13, strides=1, 
                        data_format='channels_last', 
                        padding='valid', activation='linear')(ori_inputs)
    conv_ = BatchNormalization(name='BN_conv')(conv_)
    conv_ = Activation('relu')(conv_)
    conv_ = Conv1D(5, kernel_size=7, strides=1, 
                        data_format='channels_last', 
                        padding='valid', activation='linear')(conv_)
    conv_ = BatchNormalization(name='BN_conv2')(conv_)
    conv_ = Activation('relu')(conv_)

    inputs = Reshape((-1,))(conv_)

    for i, hidden_nums in enumerate(layers):
        if i==0:
            hn = Dense(hidden_nums, activation='linear')(inputs)
            hn = BatchNormalization(name='BN_{}'.format(i))(hn)
            hn = Activation('relu')(hn)
        else:
            hn = Dense(hidden_nums, activation='linear')(hn)
            hn = BatchNormalization(name='BN_{}'.format(i))(hn)
            hn = Activation('relu')(hn)
            #hn = Dropout(0.1)(hn)
    #print(seq_len, output_features)
    #print(hn)
    outputs = Dense(seq_len*output_features, activation='sigmoid', name='output_layer')(hn) # 37*3
    outputs = Reshape((seq_len, output_features))(outputs)

    weather_fnn = Model(ori_inputs, outputs=[outputs])

    return weather_fnn 
開發者ID:BruceBinBoxing,項目名稱:Deep_Learning_Weather_Forecasting,代碼行數:39,代碼來源:weather_model.py

示例12: _get_model

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import BatchNormalization [as 別名]
def _get_model(X, cat_cols, num_cols, n_uniq, n_emb, output_activation):
        inputs = []
        num_inputs = []
        embeddings = []
        for i, col in enumerate(cat_cols):

            if not n_uniq[i]:
                n_uniq[i] = X[col].nunique()
            if not n_emb[i]:
                n_emb[i] = max(MIN_EMBEDDING, 2 * int(np.log2(n_uniq[i])))

            _input = Input(shape=(1,), name=col)
            _embed = Embedding(input_dim=n_uniq[i], output_dim=n_emb[i], name=col + EMBEDDING_SUFFIX)(_input)
            _embed = Dropout(.2)(_embed)
            _embed = Reshape((n_emb[i],))(_embed)

            inputs.append(_input)
            embeddings.append(_embed)

        if num_cols:
            num_inputs = Input(shape=(len(num_cols),), name='num_inputs')
            merged_input = Concatenate(axis=1)(embeddings + [num_inputs])

            inputs = inputs + [num_inputs]
        else:
            merged_input = Concatenate(axis=1)(embeddings)

        x = BatchNormalization()(merged_input)
        x = Dense(128, activation='relu')(x)
        x = Dropout(.5)(x)
        x = BatchNormalization()(x)
        x = Dense(64, activation='relu')(x)
        x = Dropout(.5)(x)
        x = BatchNormalization()(x)
        output = Dense(1, activation=output_activation)(x)

        model = Model(inputs=inputs, outputs=output)

        return model, n_emb, n_uniq 
開發者ID:jeongyoonlee,項目名稱:Kaggler,代碼行數:41,代碼來源:categorical.py

示例13: ss_bt

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import BatchNormalization [as 別名]
def ss_bt(self, x, dilation, strides=(1, 1), padding='same'):
        x1, x2 = self.channel_split(x)
        filters = (int(x.shape[-1]) // self.groups)
        x1 = layers.Conv2D(filters, kernel_size=(3, 1), strides=strides, padding=padding)(x1)
        x1 = layers.Activation('relu')(x1)
        x1 = layers.Conv2D(filters, kernel_size=(1, 3), strides=strides, padding=padding)(x1)
        x1 = layers.BatchNormalization()(x1)
        x1 = layers.Activation('relu')(x1)
        x1 = layers.Conv2D(filters, kernel_size=(3, 1), strides=strides, padding=padding, dilation_rate=(dilation, 1))(
            x1)
        x1 = layers.Activation('relu')(x1)
        x1 = layers.Conv2D(filters, kernel_size=(1, 3), strides=strides, padding=padding, dilation_rate=(1, dilation))(
            x1)
        x1 = layers.BatchNormalization()(x1)
        x1 = layers.Activation('relu')(x1)

        x2 = layers.Conv2D(filters, kernel_size=(1, 3), strides=strides, padding=padding)(x2)
        x2 = layers.Activation('relu')(x2)
        x2 = layers.Conv2D(filters, kernel_size=(3, 1), strides=strides, padding=padding)(x2)
        x2 = layers.BatchNormalization()(x2)
        x2 = layers.Activation('relu')(x2)
        x2 = layers.Conv2D(filters, kernel_size=(1, 3), strides=strides, padding=padding, dilation_rate=(1, dilation))(
            x2)
        x2 = layers.Activation('relu')(x2)
        x2 = layers.Conv2D(filters, kernel_size=(3, 1), strides=strides, padding=padding, dilation_rate=(dilation, 1))(
            x2)
        x2 = layers.BatchNormalization()(x2)
        x2 = layers.Activation('relu')(x2)
        x_concat = layers.concatenate([x1, x2], axis=-1)
        x_add = layers.add([x, x_concat])
        output = self.channel_shuffle(x_add)
        return output 
開發者ID:JACKYLUO1991,項目名稱:Face-skin-hair-segmentaiton-and-skin-color-evaluation,代碼行數:34,代碼來源:lednet.py

示例14: down_sample

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import BatchNormalization [as 別名]
def down_sample(self, x, filters):
        x_filters = int(x.shape[-1])
        x_conv = layers.Conv2D(filters - x_filters, kernel_size=3, strides=(2, 2), padding='same')(x)
        x_pool = layers.MaxPool2D()(x)
        x = layers.concatenate([x_conv, x_pool], axis=-1)
        x = layers.BatchNormalization()(x)
        x = layers.Activation('relu')(x)
        return x 
開發者ID:JACKYLUO1991,項目名稱:Face-skin-hair-segmentaiton-and-skin-color-evaluation,代碼行數:10,代碼來源:lednet.py

示例15: apn_module

# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import BatchNormalization [as 別名]
def apn_module(self, x):

        def right(x):
            x = layers.AveragePooling2D()(x)
            x = layers.Conv2D(self.classes, kernel_size=1, padding='same')(x)
            x = layers.BatchNormalization()(x)
            x = layers.Activation('relu')(x)
            x = layers.UpSampling2D(interpolation='bilinear')(x)
            return x

        def conv(x, filters, kernel_size, stride):
            x = layers.Conv2D(filters, kernel_size=kernel_size, strides=(stride, stride), padding='same')(x)
            x = layers.BatchNormalization()(x)
            x = layers.Activation('relu')(x)
            return x

        x_7 = conv(x, int(x.shape[-1]), 7, stride=2)
        x_5 = conv(x_7, int(x.shape[-1]), 5, stride=2)
        x_3 = conv(x_5, int(x.shape[-1]), 3, stride=2)

        x_3_1 = conv(x_3, self.classes, 3, stride=1)
        x_3_1_up = layers.UpSampling2D(interpolation='bilinear')(x_3_1)
        x_5_1 = conv(x_5, self.classes, 5, stride=1)
        x_3_5 = layers.add([x_5_1, x_3_1_up])
        x_3_5_up = layers.UpSampling2D(interpolation='bilinear')(x_3_5)
        x_7_1 = conv(x_7, self.classes, 3, stride=1)
        x_3_5_7 = layers.add([x_7_1, x_3_5_up])
        x_3_5_7_up = layers.UpSampling2D(interpolation='bilinear')(x_3_5_7)

        x_middle = conv(x, self.classes, 1, stride=1)
        x_middle = layers.multiply([x_3_5_7_up, x_middle])

        x_right = right(x)
        x_middle = layers.add([x_middle, x_right])
        return x_middle 
開發者ID:JACKYLUO1991,項目名稱:Face-skin-hair-segmentaiton-and-skin-color-evaluation,代碼行數:37,代碼來源:lednet.py


注:本文中的keras.layers.BatchNormalization方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。