當前位置: 首頁>>代碼示例>>Python>>正文


Python keras.io方法代碼示例

本文整理匯總了Python中keras.io方法的典型用法代碼示例。如果您正苦於以下問題:Python keras.io方法的具體用法?Python keras.io怎麽用?Python keras.io使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras的用法示例。


在下文中一共展示了keras.io方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import io [as 別名]
def __init__(self,
                 input_dim,
                 quantiles,
                 depth=3,
                 width=128,
                 activation="relu",
                 ensemble_size=1,
                 **kwargs):
        """
        Create a QRNN model.

        Arguments:

            input_dim(int): The dimension of the measurement space, i.e. the number
                            of elements in a single measurement vector y

            quantiles(np.array): 1D-array containing the quantiles  to estimate of
                                 the posterior distribution. Given as fractions
                                 within the range [0, 1].

            depth(int): The number of hidden layers  in the neural network to
                        use for the regression. Default is 3, i.e. three hidden
                        plus input and output layer.

            width(int): The number of neurons in each hidden layer.

            activation(str): The name of the activation functions to use. Default
                             is "relu", for rectified linear unit. See 
                             `this <https://keras.io/activations>`_ link for
                             available functions.

            **kwargs: Additional keyword arguments are passed to the constructor
                      call `keras.layers.Dense` of the hidden layers, which can
                      for example be used to add regularization. For more info consult
                      `Keras documentation. <https://keras.io/layers/core/#dense>`_
        """
        self.input_dim = input_dim
        self.quantiles = np.array(quantiles)
        self.depth = depth
        self.width = width
        self.activation = activation

        model = Sequential()
        if depth == 0:
            model.add(Dense(input_dim=input_dim,
                            units=len(quantiles),
                            activation=None))
        else:
            model.add(Dense(input_dim=input_dim,
                            units=width,
                            activation=activation))
            for i in range(depth - 2):
                model.add(Dense(units=width,
                                activation=activation,
                                **kwargs))
            model.add(Dense(units=len(quantiles), activation=None))
        self.models = [clone_model(model) for i in range(ensemble_size)] 
開發者ID:atmtools,項目名稱:typhon,代碼行數:59,代碼來源:qrnn.py

示例2: keras_reproducible

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import io [as 別名]
def keras_reproducible(seed=1234, verbose=0, TF_CPP_MIN_LOG_LEVEL="3"):
    """
    https://keras.io/getting-started/faq/#how-can-i-obtain-reproducible-results-using-keras-during-development
    """
    import random
    import pkg_resources
    import os

    random.seed(seed)
    np.random.seed(seed)

    os.environ["PYTHONHASHSEED"] = "0"  # might need to do this outside the script

    if verbose == 0:
        os.environ[
            "TF_CPP_MIN_LOG_LEVEL"
        ] = TF_CPP_MIN_LOG_LEVEL  # 2 will print warnings

    try:
        import tensorflow
    except ImportError:
        raise ImportError("Missing required package 'tensorflow'")

    # Use the TF 1.x API
    if pkg_resources.get_distribution("tensorflow").version.startswith("1."):
        tf = tensorflow
    else:
        tf = tensorflow.compat.v1

    if verbose == 0:
        # https://github.com/tensorflow/tensorflow/issues/27023
        try:
            from tensorflow.python.util import deprecation

            deprecation._PRINT_DEPRECATION_WARNINGS = False
        except ImportError:
            try:
                from tensorflow.python.util import module_wrapper as deprecation
            except ImportError:
                from tensorflow.python.util import deprecation_wrapper as deprecation
            deprecation._PER_MODULE_WARNING_LIMIT = 0

        # this was deprecated in 1.15 (maybe earlier)
        tensorflow.compat.v1.logging.set_verbosity(tensorflow.compat.v1.logging.ERROR)

    ConfigProto = tf.ConfigProto

    session_conf = tf.ConfigProto(
        intra_op_parallelism_threads=1, inter_op_parallelism_threads=1
    )

    with capture_all():  # doesn't have quiet option
        try:
            from tensorflow.python.keras import backend as K
        except ImportError:
            raise ImportError("Missing required module 'keras'")

    tf.set_random_seed(seed)
    sess = tf.Session(graph=tf.get_default_graph(), config=session_conf)
    K.set_session(sess) 
開發者ID:microsoft,項目名稱:SparseSC,代碼行數:62,代碼來源:match_space.py

示例3: load_model

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import io [as 別名]
def load_model(input_model_path, input_json_path=None, input_yaml_path=None):
    if not Path(input_model_path).exists():
        raise FileNotFoundError(
            'Model file `{}` does not exist.'.format(input_model_path))
    try:
        model = keras.models.load_model(input_model_path)
        return model
    except FileNotFoundError as err:
        logging.error('Input mode file (%s) does not exist.', FLAGS.input_model)
        raise err
    except ValueError as wrong_file_err:
        if input_json_path:
            if not Path(input_json_path).exists():
                raise FileNotFoundError(
                    'Model description json file `{}` does not exist.'.format(
                        input_json_path))
            try:
                model = model_from_json(open(str(input_json_path)).read())
                model.load_weights(input_model_path)
                return model
            except Exception as err:
                logging.error("Couldn't load model from json.")
                raise err
        elif input_yaml_path:
            if not Path(input_yaml_path).exists():
                raise FileNotFoundError(
                    'Model description yaml file `{}` does not exist.'.format(
                        input_yaml_path))
            try:
                model = model_from_yaml(open(str(input_yaml_path)).read())
                model.load_weights(input_model_path)
                return model
            except Exception as err:
                logging.error("Couldn't load model from yaml.")
                raise err
        else:
            logging.error(
                'Input file specified only holds the weights, and not '
                'the model definition. Save the model using '
                'model.save(filename.h5) which will contain the network '
                'architecture as well as its weights. '
                'If the model is saved using the '
                'model.save_weights(filename) function, either '
                'input_model_json or input_model_yaml flags should be set to '
                'to import the network architecture prior to loading the '
                'weights. \n'
                'Check the keras documentation for more details '
                '(https://keras.io/getting-started/faq/)')
            raise wrong_file_err 
開發者ID:amir-abdi,項目名稱:keras_to_tensorflow,代碼行數:51,代碼來源:keras_to_tensorflow.py


注:本文中的keras.io方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。