本文整理匯總了Python中keras.initializers.glorot_normal方法的典型用法代碼示例。如果您正苦於以下問題:Python initializers.glorot_normal方法的具體用法?Python initializers.glorot_normal怎麽用?Python initializers.glorot_normal使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類keras.initializers
的用法示例。
在下文中一共展示了initializers.glorot_normal方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: build
# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import glorot_normal [as 別名]
def build(self, input_shape):
n_weight_rows = input_shape[2]
self.kernel_1 = self.add_weight(name='kernel_1',
shape=(n_weight_rows, self.output_dim),
initializer=glorot_normal(),
trainable=True)
self.kernel_2 = self.add_weight(name='kernel_2',
shape=(n_weight_rows, self.output_dim),
initializer=glorot_normal(),
trainable=True)
self.bias_1 = self.add_weight(name='bias_1',
shape=(self.output_dim,),
initializer=glorot_normal(),
trainable=True)
self.bias_2 = self.add_weight(name='bias_2',
shape=(self.output_dim,),
initializer=glorot_normal(),
trainable=True)
super(GaussianLayer, self).build(input_shape)
示例2: test_glorot_normal
# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import glorot_normal [as 別名]
def test_glorot_normal(tensor_shape):
fan_in, fan_out = initializers._compute_fans(tensor_shape)
scale = np.sqrt(2. / (fan_in + fan_out))
_runner(initializers.glorot_normal(), tensor_shape,
target_mean=0., target_std=None, target_max=2 * scale)
示例3: get_model
# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import glorot_normal [as 別名]
def get_model(embed_weights):
input_layer = Input(shape=(MAX_LEN, ), name='input')
# 1. embedding layer
# get embedding weights
print('load pre-trained embedding weights ......')
input_dim = embed_weights.shape[0]
output_dim = embed_weights.shape[1]
x = Embedding(
input_dim=input_dim,
output_dim=output_dim,
weights=[embed_weights],
trainable=False,
name='embedding'
)(input_layer)
# clean up
del embed_weights, input_dim, output_dim
gc.collect()
# 2. dropout
x = SpatialDropout1D(rate=SPATIAL_DROPOUT)(x)
# 3. bidirectional lstm
x = Bidirectional(
layer=CuDNNLSTM(RNN_UNITS, return_sequences=True,
kernel_initializer=glorot_normal(seed=1029),
recurrent_initializer=orthogonal(gain=1.0, seed=1029)),
name='bidirectional_lstm')(x)
# 4. capsule layer
capsul = Capsule(num_capsule=10, dim_capsule=10, routings=4, share_weights=True)(x) # noqa
capsul = Flatten()(capsul)
capsul = DropConnect(Dense(32, activation="relu"), prob=0.01)(capsul)
# 5. attention later
atten = Attention(step_dim=MAX_LEN, name='attention')(x)
atten = DropConnect(Dense(16, activation="relu"), prob=0.05)(atten)
x = Concatenate(axis=-1)([capsul, atten])
# 6. output (sigmoid)
output_layer = Dense(units=1, activation='sigmoid', name='output')(x)
model = Model(inputs=input_layer, outputs=output_layer)
# compile model
model.compile(loss='binary_crossentropy', optimizer='adam')
return model
示例4: _build_fn_regressor
# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import glorot_normal [as 別名]
def _build_fn_regressor(input_shape):
model = Sequential(
[
Dense(100, activation="relu", input_shape=input_shape),
Dense(Integer(40, 60), activation="relu", kernel_initializer="glorot_normal"),
Dropout(Real(0.2, 0.7)),
Dense(1, activation=Categorical(["relu", "sigmoid"]), kernel_initializer="orthogonal"),
]
)
model.compile(
optimizer=Categorical(["adam", "rmsprop"]),
loss="mean_absolute_error",
metrics=["mean_absolute_error"],
)
return model
示例5: run_initialization_matching_optimization_0
# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import glorot_normal [as 別名]
def run_initialization_matching_optimization_0(build_fn):
optimizer = DummyOptPro(iterations=1)
optimizer.forge_experiment(
model_initializer=KerasClassifier,
model_init_params=dict(build_fn=build_fn),
model_extra_params=dict(epochs=1, batch_size=128, verbose=0),
)
optimizer.go()
return optimizer
#################### `glorot_normal` (`VarianceScaling`) ####################
示例6: _build_fn_glorot_normal_0
# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import glorot_normal [as 別名]
def _build_fn_glorot_normal_0(input_shape): # `glorot_normal()`
model = Sequential(
[
Dense(Integer(50, 100), input_shape=input_shape),
Dense(1, kernel_initializer=glorot_normal()),
]
)
model.compile(optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"])
return model
示例7: _build_fn_glorot_normal_1
# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import glorot_normal [as 別名]
def _build_fn_glorot_normal_1(input_shape): # `"glorot_normal"`
model = Sequential(
[
Dense(Integer(50, 100), input_shape=input_shape),
Dense(1, kernel_initializer="glorot_normal"),
]
)
model.compile(optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"])
return model
#################### `orthogonal` - Excluding default (`Initializer`) ####################
示例8: _build_fn_categorical_0
# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import glorot_normal [as 別名]
def _build_fn_categorical_0(input_shape): # `Categorical(["glorot_normal", "orthogonal"])`
model = Sequential(
[
Dense(Integer(50, 100), input_shape=input_shape),
Dense(1, kernel_initializer=Categorical(["glorot_normal", "orthogonal"])),
]
)
model.compile(optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"])
return model
示例9: _build_fn_categorical_2
# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import glorot_normal [as 別名]
def _build_fn_categorical_2(input_shape): # `Categorical([glorot_normal(), Orthogonal()])`
model = Sequential(
[
Dense(Integer(50, 100), input_shape=input_shape),
Dense(1, kernel_initializer=Categorical([glorot_normal(), Orthogonal()])),
]
)
model.compile(optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"])
return model
示例10: _build_fn_categorical_3
# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import glorot_normal [as 別名]
def _build_fn_categorical_3(input_shape): # `Categorical(["glorot_normal", orthogonal(gain=1)])`
model = Sequential(
[
Dense(Integer(50, 100), input_shape=input_shape),
Dense(1, kernel_initializer=Categorical(["glorot_normal", orthogonal(gain=1)])),
]
)
model.compile(optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"])
return model
示例11: _build_fn_categorical_4
# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import glorot_normal [as 別名]
def _build_fn_categorical_4(input_shape): # `Categorical(["glorot_normal", Orthogonal(gain=1)])`
model = Sequential(
[
Dense(Integer(50, 100), input_shape=input_shape),
Dense(1, kernel_initializer=Categorical(["glorot_normal", Orthogonal(gain=1)])),
]
)
model.compile(optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"])
return model
示例12: test_in_space_inclusive_callable
# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import glorot_normal [as 別名]
def test_in_space_inclusive_callable(self, old_opt, new_opt):
assert in_similar_experiment_ids(old_opt, new_opt)
##################################################
# `glorot_normal` (`VarianceScaling`)
##################################################
示例13: test_in_categorical_0
# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import glorot_normal [as 別名]
def test_in_categorical_0(self, old_opt): # `Categorical(["glorot_normal", "o"])`
assert in_similar_experiment_ids(old_opt, self.opt_g_0)
示例14: test_in_categorical_2
# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import glorot_normal [as 別名]
def test_in_categorical_2(self, old_opt): # `Categorical([glorot_normal(), O()])`
assert in_similar_experiment_ids(old_opt, self.opt_g_2)
示例15: test_in_categorical_3
# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import glorot_normal [as 別名]
def test_in_categorical_3(self, old_opt): # `Categorical(["glorot_normal", o(gain=1)])`
assert in_similar_experiment_ids(old_opt, self.opt_g_3)