本文整理匯總了Python中keras.initializers._compute_fans方法的典型用法代碼示例。如果您正苦於以下問題:Python initializers._compute_fans方法的具體用法?Python initializers._compute_fans怎麽用?Python initializers._compute_fans使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類keras.initializers
的用法示例。
在下文中一共展示了initializers._compute_fans方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __call__
# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import _compute_fans [as 別名]
def __call__(self, shape, dtype=None):
if self.nb_filters is not None:
kernel_shape = tuple(self.kernel_size) + (int(self.input_dim), self.nb_filters)
else:
kernel_shape = (int(self.input_dim), self.kernel_size[-1])
fan_in, fan_out = initializers._compute_fans(
tuple(self.kernel_size) + (self.input_dim, self.nb_filters)
)
if self.criterion == 'glorot':
s = 1. / (fan_in + fan_out)
elif self.criterion == 'he':
s = 1. / fan_in
else:
raise ValueError('Invalid criterion: ' + self.criterion)
rng = RandomState(self.seed)
modulus = rng.rayleigh(scale=s, size=kernel_shape)
phase = rng.uniform(low=-np.pi, high=np.pi, size=kernel_shape)
weight_real = modulus * np.cos(phase)
weight_imag = modulus * np.sin(phase)
weight = np.concatenate([weight_real, weight_imag], axis=-1)
return weight
示例2: test_lecun_uniform
# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import _compute_fans [as 別名]
def test_lecun_uniform(tensor_shape):
fan_in, _ = initializers._compute_fans(tensor_shape)
scale = np.sqrt(3. / fan_in)
_runner(initializers.lecun_uniform(), tensor_shape,
target_mean=0., target_max=scale, target_min=-scale)
示例3: test_glorot_uniform
# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import _compute_fans [as 別名]
def test_glorot_uniform(tensor_shape):
fan_in, fan_out = initializers._compute_fans(tensor_shape)
scale = np.sqrt(6. / (fan_in + fan_out))
_runner(initializers.glorot_uniform(), tensor_shape,
target_mean=0., target_max=scale, target_min=-scale)
示例4: test_he_uniform
# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import _compute_fans [as 別名]
def test_he_uniform(tensor_shape):
fan_in, _ = initializers._compute_fans(tensor_shape)
scale = np.sqrt(6. / fan_in)
_runner(initializers.he_uniform(), tensor_shape,
target_mean=0., target_max=scale, target_min=-scale)
示例5: test_glorot_normal
# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import _compute_fans [as 別名]
def test_glorot_normal(tensor_shape):
fan_in, fan_out = initializers._compute_fans(tensor_shape)
scale = np.sqrt(2. / (fan_in + fan_out))
_runner(initializers.glorot_normal(), tensor_shape,
target_mean=0., target_std=None, target_max=2 * scale)
示例6: test_he_normal
# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import _compute_fans [as 別名]
def test_he_normal(tensor_shape):
fan_in, _ = initializers._compute_fans(tensor_shape)
scale = np.sqrt(2. / fan_in)
_runner(initializers.he_normal(), tensor_shape,
target_mean=0., target_std=None, target_max=2 * scale)