當前位置: 首頁>>代碼示例>>Python>>正文


Python initializers.Zeros方法代碼示例

本文整理匯總了Python中keras.initializers.Zeros方法的典型用法代碼示例。如果您正苦於以下問題:Python initializers.Zeros方法的具體用法?Python initializers.Zeros怎麽用?Python initializers.Zeros使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.initializers的用法示例。


在下文中一共展示了initializers.Zeros方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: build

# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import Zeros [as 別名]
def build(self, input_shape):
        self._g = self.add_weight(
            name='gain', 
            shape=(input_shape[-1],),
            initializer=Ones(),
            trainable=True
        )
        self._b = self.add_weight(
            name='bias', 
            shape=(input_shape[-1],),
            initializer=Zeros(),
            trainable=True
        ) 
開發者ID:zimmerrol,項目名稱:keras-utility-layer-collection,代碼行數:15,代碼來源:layer_normalization.py

示例2: build

# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import Zeros [as 別名]
def build(self, input_shape):
        self.gamma = self.add_weight(name='gamma', shape=input_shape[-1:], initializer=Ones(), trainable=True)
        self.beta = self.add_weight(name='beta', shape=input_shape[-1:], initializer=Zeros(), trainable=True)
        super().build(input_shape) 
開發者ID:yyht,項目名稱:BERT,代碼行數:6,代碼來源:layers.py

示例3: build

# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import Zeros [as 別名]
def build(self, input_shape):
        assert len(input_shape) >= 3
        self.input_spec = [InputSpec(shape=input_shape)]

        if not self.layer.built:
            self.layer.build(input_shape)
            self.layer.built = True

        super(AttentionWrapper, self).build()

        if hasattr(self.attention_vec, '_keras_shape'):
            attention_dim = self.attention_vec._keras_shape[1]
        else:
            raise Exception(
                'Layer could not be build: No information about expected input shape.')

        kernel_initializer = self.layer.kernel_initializer
        self.U_a = self.layer.add_weight((self.layer.units, self.layer.units), name='{}_U_a'.format(
            self.name), initializer=kernel_initializer)
        self.b_a = self.layer.add_weight(
            (self.layer.units,), name='{}_b_a'.format(self.name), initializer=Zeros())

        self.U_m = self.layer.add_weight((attention_dim, self.layer.units), name='{}_U_m'.format(
            self.name), initializer=kernel_initializer)
        self.b_m = self.layer.add_weight(
            (self.layer.units,), name='{}_b_m'.format(self.name), initializer=Zeros())

        if self.single_attention_param:
            self.U_s = self.layer.add_weight((self.layer.units, 1), name='{}_U_s'.format(
                self.name), initializer=kernel_initializer)
            self.b_s = self.layer.add_weight(
                (1,), name='{}_b_s'.format(self.name), initializer=Zeros())
        else:
            self.U_s = self.layer.add_weight((self.layer.units, self.layer.units), name='{}_U_s'.format(
                self.name), initializer=kernel_initializer)
            self.b_s = self.layer.add_weight(
                (self.layer.units,), name='{}_b_s'.format(self.name), initializer=Zeros()) 
開發者ID:saurabhmathur96,項目名稱:Neural-Chatbot,代碼行數:39,代碼來源:sequence_blocks.py

示例4: reset_states

# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import Zeros [as 別名]
def reset_states(self, states_value=None):
        if len(self.states) == 0:
            return
        if not self.stateful:
            raise AttributeError('Layer must be stateful.')
        if not hasattr(self, 'states') or self.states[0] is None:
            state_shapes = list(map(K.int_shape, self.model.input[1:]))
            self.states = list(map(K.zeros, state_shapes))

        if states_value is not None:
            if type(states_value) not in (list, tuple):
                states_value = [states_value] * len(self.states)
            assert len(states_value) == len(self.states), 'Your RNN has ' + str(len(self.states)) + ' states, but was provided ' + str(len(states_value)) + ' state values.'
            if 'numpy' not in type(states_value[0]):
                states_value = list(map(np.array, states_value))
            if states_value[0].shape == tuple():
                for state, val in zip(self.states, states_value):
                    K.set_value(state, K.get_value(state) * 0. + val)
            else:
                for state, val in zip(self.states, states_value):
                    K.set_value(state, val)
        else:
            if self.state_initializer:
                for state, init in zip(self.states, self.state_initializer):
                    if isinstance(init, initializers.Zeros):
                        K.set_value(state, 0 * K.get_value(state))
                    else:
                        K.set_value(state, K.eval(init(K.get_value(state).shape)))
            else:
                for state in self.states:
                    K.set_value(state, 0 * K.get_value(state))

    # EXECUTION 
開發者ID:farizrahman4u,項目名稱:recurrentshop,代碼行數:35,代碼來源:engine.py

示例5: build

# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import Zeros [as 別名]
def build(self, input_shape):
        self.gamma = self.add_weight(name='gamma', shape=input_shape[-1:],
                                     initializer=Ones(), trainable=True)
        self.beta = self.add_weight(name='beta', shape=input_shape[-1:],
                                    initializer=Zeros(), trainable=True)
        super(LayerNormalization, self).build(input_shape) 
開發者ID:GlassyWing,項目名稱:transformer-keras,代碼行數:8,代碼來源:core.py

示例6: get_initial_state

# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import Zeros [as 別名]
def get_initial_state(self, inputs):
        if type(self.model.input) is not list:
            return []
        try:
            batch_size = K.int_shape(inputs)[0]
        except:
            batch_size = None
        state_shapes = list(map(K.int_shape, self.model.input[1:]))
        states = []
        if self.readout:
            state_shapes.pop()
            # default value for initial_readout is handled in call()
        for shape in state_shapes:
            if None in shape[1:]:
                raise Exception('Only the batch dimension of a state can be left unspecified. Got state with shape ' + str(shape))
            if shape[0] is None:
                ndim = K.ndim(inputs)
                z = K.zeros_like(inputs)
                slices = [slice(None)] + [0] * (ndim - 1)
                z = z[slices]  # (batch_size,)
                state_ndim = len(shape)
                z = K.reshape(z, (-1,) + (1,) * (state_ndim - 1))
                z = K.tile(z, (1,) + tuple(shape[1:]))
                states.append(z)
            else:
                states.append(K.zeros(shape))
        state_initializer = self.state_initializer
        if state_initializer:
            # some initializers don't accept symbolic shapes
            for i in range(len(state_shapes)):
                if state_shapes[i][0] is None:
                    if hasattr(self, 'batch_size'):
                        state_shapes[i] = (self.batch_size,) + state_shapes[i][1:]
                if None in state_shapes[i]:
                    state_shapes[i] = K.shape(states[i])
            num_state_init = len(state_initializer)
            num_state = self.num_states
            assert num_state_init == num_state, 'RNN has ' + str(num_state) + ' states, but was provided ' + str(num_state_init) + ' state initializers.'
            for i in range(len(states)):
                init = state_initializer[i]
                shape = state_shapes[i]
                try:
                    if not isinstance(init, initializers.Zeros):
                        states[i] = init(shape)
                except:
                    raise Exception('Seems the initializer ' + init.__class__.__name__ + ' does not support symbolic shapes(' + str(shape) + '). Try providing the full input shape (include batch dimension) for you RecurrentModel.')
        return states 
開發者ID:farizrahman4u,項目名稱:recurrentshop,代碼行數:49,代碼來源:engine.py

示例7: tp1_node_update

# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import Zeros [as 別名]
def tp1_node_update(graph_node_embs, node_rel, node_rel_weight, max_nodes, max_bi_relations, embed_dim, label):
    """
    graph_node_embs has shape (batch_size, max_nodes per graph, embed_dim feats).
    """
    dense_dim = embed_dim

    x = gather_layer([graph_node_embs, node_rel])
    logging.debug('After gather3 shape: {0}'.format(x.shape))

    x = Reshape((max_nodes * max_bi_relations, 2 * embed_dim))(x)

    x = TimeDistributed(
        Dense(
            dense_dim,
            kernel_initializer=initializers.Ones(),
            bias_initializer=initializers.Zeros(),
            name=label + '_dense1'))(x)
    # TODO: re-enable the batch normalization.
    # x = BatchNormalization(axis=2, name=label + '_bn1')(x)
    x = Activation('relu')(x)
    x = TimeDistributed(
        Dense(
            dense_dim,
            kernel_initializer=initializers.Ones(),
            bias_initializer=initializers.Zeros(),
            name=label + '_dense2'))(x)
    # x = BatchNormalization(axis=2, name=label + '_bn2')(x)
    x = Activation('relu')(x)

    normalizer = Reshape((max_nodes * max_bi_relations,))(node_rel_weight)
    normalizer = RepeatVector(dense_dim)(normalizer)
    normalizer = Permute((2, 1))(normalizer)

    x = Multiply()([x, normalizer])
    x = Reshape((max_nodes, max_bi_relations, dense_dim))(x)

    x = Lambda(
        lambda xin: K.sum(xin, axis=2),
        output_shape=(None, max_nodes * max_bi_relations, dense_dim),
        name=label + '_integrate')(x)
    return x

# TODO: Dense use_bias=True 
開發者ID:mynlp,項目名稱:ccg2lambda,代碼行數:45,代碼來源:graph_emb.py


注:本文中的keras.initializers.Zeros方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。