當前位置: 首頁>>代碼示例>>Python>>正文


Python initializers.RandomUniform方法代碼示例

本文整理匯總了Python中keras.initializers.RandomUniform方法的典型用法代碼示例。如果您正苦於以下問題:Python initializers.RandomUniform方法的具體用法?Python initializers.RandomUniform怎麽用?Python initializers.RandomUniform使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.initializers的用法示例。


在下文中一共展示了initializers.RandomUniform方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import RandomUniform [as 別名]
def __init__(self, t_left_initializer='zeros',
                 a_left_initializer=initializers.RandomUniform(minval=0, maxval=1),
                 t_right_initializer=initializers.RandomUniform(minval=0, maxval=5),
                 a_right_initializer='ones',
                 shared_axes=None,
                 **kwargs):
        super(SReLU, self).__init__(**kwargs)
        self.supports_masking = True
        self.t_left_initializer = initializers.get(t_left_initializer)
        self.a_left_initializer = initializers.get(a_left_initializer)
        self.t_right_initializer = initializers.get(t_right_initializer)
        self.a_right_initializer = initializers.get(a_right_initializer)
        if shared_axes is None:
            self.shared_axes = None
        elif not isinstance(shared_axes, (list, tuple)):
            self.shared_axes = [shared_axes]
        else:
            self.shared_axes = list(shared_axes) 
開發者ID:keras-team,項目名稱:keras-contrib,代碼行數:20,代碼來源:srelu.py

示例2: build

# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import RandomUniform [as 別名]
def build(self, input_shape):

        hadamard_size = 2 ** int(math.ceil(math.log(max(input_shape[1], self.output_dim), 2)))
        self.hadamard = K.constant(
            value=hadamard(hadamard_size, dtype=np.int8)[:input_shape[1], :self.output_dim])

        init_scale = 1. / math.sqrt(self.output_dim)

        self.scale = self.add_weight(name='scale', 
                                      shape=(1,),
                                      initializer=Constant(init_scale),
                                      trainable=True)

        if self.use_bias:
            self.bias  = self.add_weight(name='bias', 
                                          shape=(self.output_dim,),
                                          initializer=RandomUniform(-init_scale, init_scale),
                                          trainable=True)

        super(HadamardClassifier, self).build(input_shape) 
開發者ID:antorsae,項目名稱:landmark-recognition-challenge,代碼行數:22,代碼來源:hadamard.py

示例3: build

# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import RandomUniform [as 別名]
def build(self):
        """
        Build model structure.

        aNMM model based on bin weighting and query term attentions
        """
        # query is [batch_size, left_text_len]
        # doc is [batch_size, right_text_len, bin_num]
        query, doc = self._make_inputs()
        embedding = self._make_embedding_layer()

        q_embed = embedding(query)
        q_attention = keras.layers.Dense(
            1, kernel_initializer=RandomUniform(), use_bias=False)(q_embed)
        q_text_len = self._params['input_shapes'][0][0]

        q_attention = keras.layers.Lambda(
            lambda x: softmax(x, axis=1),
            output_shape=(q_text_len,)
        )(q_attention)
        d_bin = keras.layers.Dropout(
            rate=self._params['dropout_rate'])(doc)
        for layer_id in range(self._params['num_layers'] - 1):
            d_bin = keras.layers.Dense(
                self._params['hidden_sizes'][layer_id],
                kernel_initializer=RandomUniform())(d_bin)
            d_bin = keras.layers.Activation('tanh')(d_bin)
        d_bin = keras.layers.Dense(
            self._params['hidden_sizes'][self._params['num_layers'] - 1])(
            d_bin)
        d_bin = keras.layers.Reshape((q_text_len,))(d_bin)
        q_attention = keras.layers.Reshape((q_text_len,))(q_attention)
        score = keras.layers.Dot(axes=[1, 1])([d_bin, q_attention])
        x_out = self._make_output_layer()(score)
        self._backend = keras.Model(inputs=[query, doc], outputs=x_out) 
開發者ID:NTMC-Community,項目名稱:MatchZoo,代碼行數:37,代碼來源:anmm.py

示例4: test_uniform

# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import RandomUniform [as 別名]
def test_uniform(tensor_shape):
    _runner(initializers.RandomUniform(minval=-1, maxval=1), tensor_shape,
            target_mean=0., target_max=1, target_min=-1) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:5,代碼來源:initializers_test.py

示例5: __init__

# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import RandomUniform [as 別名]
def __init__(self, config, ntags=None):

        # build input, directly feed with word embedding by the data generator
        word_input = Input(shape=(None, config.word_embedding_size), name='word_input')

        # build character based embedding
        char_input = Input(shape=(None, config.max_char_length), dtype='int32', name='char_input')
        char_embeddings = TimeDistributed(Embedding(input_dim=config.char_vocab_size,
                                    output_dim=config.char_embedding_size,
                                    #mask_zero=True,
                                    #embeddings_initializer=RandomUniform(minval=-0.5, maxval=0.5),
                                    name='char_embeddings'
                                    ))(char_input)

        chars = TimeDistributed(Bidirectional(LSTM(config.num_char_lstm_units, return_sequences=False)))(char_embeddings)

        # length of sequence not used for the moment (but used for f1 communication)
        length_input = Input(batch_shape=(None, 1), dtype='int32', name='length_input')

        # combine characters and word embeddings
        x = Concatenate()([word_input, chars])
        x = Dropout(config.dropout)(x)

        x = Bidirectional(LSTM(units=config.num_word_lstm_units, 
                               return_sequences=True, 
                               recurrent_dropout=config.recurrent_dropout))(x)
        x = Dropout(config.dropout)(x)
        x = Dense(config.num_word_lstm_units, activation='tanh')(x)
        x = Dense(ntags)(x)
        self.crf = ChainCRF()
        pred = self.crf(x)

        self.model = Model(inputs=[word_input, char_input, length_input], outputs=[pred])
        self.config = config 
開發者ID:kermitt2,項目名稱:delft,代碼行數:36,代碼來源:models.py

示例6: build

# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import RandomUniform [as 別名]
def build(self, input_shape):
        init = initializers.RandomUniform(minval=-50, maxval=50, seed=None)
        self.kernel = self.add_weight(name='kernel', shape=(self.height, self.width, 3),
                                      initializer=init, trainable=True)

        super(InputReflect, self).build(input_shape) 
開發者ID:overflocat,項目名稱:fast-neural-style-keras,代碼行數:8,代碼來源:utils.py

示例7: add_embed_layer

# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import RandomUniform [as 別名]
def add_embed_layer(vocab_emb, vocab_size, embed_size, train_embed, dropout_rate):
    emb_layer = Sequential()
    if vocab_emb is not None:
        print("Embedding with initialized weights")
        print(vocab_size, embed_size)
        emb_layer.add(Embedding(input_dim=vocab_size, output_dim=embed_size, weights=[vocab_emb],
                                trainable=train_embed, mask_zero=False))
    else:
        print("Embedding with random weights")
        emb_layer.add(Embedding(input_dim=vocab_size, output_dim=embed_size, trainable=True, mask_zero=False,
                                embeddings_initializer=RandomUniform(-0.05, 0.05)))
    emb_layer.add(SpatialDropout1D(dropout_rate))
    return emb_layer 
開發者ID:jinfengr,項目名稱:neural-tweet-search,代碼行數:15,代碼來源:attention_model.py

示例8: build

# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import RandomUniform [as 別名]
def build(self, input_shape):
        assert len(input_shape) >= 2
        input_dim = input_shape[1]

        if self.H == 'Glorot':
            self.H = np.float32(np.sqrt(1.5 / (input_dim + self.units)))
            #print('Glorot H: {}'.format(self.H))
        if self.kernel_lr_multiplier == 'Glorot':
            self.kernel_lr_multiplier = np.float32(1. / np.sqrt(1.5 / (input_dim + self.units)))
            #print('Glorot learning rate multiplier: {}'.format(self.kernel_lr_multiplier))
            
        self.kernel_constraint = Clip(-self.H, self.H)
        self.kernel_initializer = initializers.RandomUniform(-self.H, self.H)
        self.kernel = self.add_weight(shape=(input_dim, self.units),
                                     initializer=self.kernel_initializer,
                                     name='kernel',
                                     regularizer=self.kernel_regularizer,
                                     constraint=self.kernel_constraint)

        if self.use_bias:
            self.lr_multipliers = [self.kernel_lr_multiplier, self.bias_lr_multiplier]
            self.bias = self.add_weight(shape=(self.output_dim,),
                                     initializer=self.bias_initializer,
                                     name='bias',
                                     regularizer=self.bias_regularizer,
                                     constraint=self.bias_constraint)
        else:
            self.lr_multipliers = [self.kernel_lr_multiplier]
            self.bias = None

        self.input_spec = InputSpec(min_ndim=2, axes={-1: input_dim})
        self.built = True 
開發者ID:DingKe,項目名稱:nn_playground,代碼行數:34,代碼來源:binary_layers.py

示例9: build

# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import RandomUniform [as 別名]
def build(self, input_shape):
        assert len(input_shape) >= 2
        input_dim = input_shape[1]

        if self.H == 'Glorot':
            self.H = np.float32(np.sqrt(1.5 / (input_dim + self.units)))
            #print('Glorot H: {}'.format(self.H))
        if self.kernel_lr_multiplier == 'Glorot':
            self.kernel_lr_multiplier = np.float32(1. / np.sqrt(1.5 / (input_dim + self.units)))
            #print('Glorot learning rate multiplier: {}'.format(self.lr_multiplier))
            
        self.kernel_constraint = Clip(-self.H, self.H)
        self.kernel_initializer = initializers.RandomUniform(-self.H, self.H)
        self.kernel = self.add_weight(shape=(input_dim, self.units),
                                     initializer=self.kernel_initializer,
                                     name='kernel',
                                     regularizer=self.kernel_regularizer,
                                     constraint=self.kernel_constraint)

        if self.use_bias:
            self.lr_multipliers = [self.kernel_lr_multiplier, self.bias_lr_multiplier]
            self.bias = self.add_weight(shape=(self.output_dim,),
                                     initializer=self.bias_initializer,
                                     name='bias',
                                     regularizer=self.bias_regularizer,
                                     constraint=self.bias_constraint)
        else:
            self.lr_multipliers = [self.kernel_lr_multiplier]
            self.bias = None
        self.built = True 
開發者ID:DingKe,項目名稱:nn_playground,代碼行數:32,代碼來源:binary_layers.py

示例10: __init__

# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import RandomUniform [as 別名]
def __init__(self,
                 input_shape,
                 n_classes=None,
                 init=RandomUniform(minval=-0.01, maxval=0.01),
                 y=None,
                 model='cnn',
                 vocab_sz=None,
                 word_embedding_dim=100,
                 embedding_matrix=None
                 ):

        super(WSTC, self).__init__()

        self.input_shape = input_shape
        self.y = y
        self.n_classes = n_classes
        if model == 'cnn':
            self.classifier = ConvolutionLayer(self.input_shape[1], n_classes=n_classes,
                                                vocab_sz=vocab_sz, embedding_matrix=embedding_matrix, 
                                                word_embedding_dim=word_embedding_dim, init=init)
        elif model == 'rnn':
            self.classifier = HierAttLayer(self.input_shape, n_classes=n_classes,
                                             vocab_sz=vocab_sz, embedding_matrix=embedding_matrix, 
                                             word_embedding_dim=word_embedding_dim)
        
        self.model = self.classifier
        self.sup_list = {} 
開發者ID:yumeng5,項目名稱:WeSTClass,代碼行數:29,代碼來源:model.py

示例11: __init__

# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import RandomUniform [as 別名]
def __init__(self,
                 input_shape,
                 class_tree,
                 max_level,
                 sup_source,
                 init=RandomUniform(minval=-0.01, maxval=0.01),
                 y=None,
                 vocab_sz=None,
                 word_embedding_dim=100,
                 blocking_perc=0,
                 block_thre=1.0,
                 block_level=1,
                 ):

        super(WSTC, self).__init__()

        self.input_shape = input_shape
        self.class_tree = class_tree
        self.y = y
        if type(y) == dict:
            self.eval_set = np.array([ele for ele in y])
        else:
            self.eval_set = None
        self.vocab_sz = vocab_sz
        self.block_level = block_level
        self.block_thre = block_thre
        self.block_label = {}
        self.siblings_map = {}
        self.x = Input(shape=(input_shape[1],), name='input')
        self.model = []
        self.sup_dict = {}
        if sup_source == 'docs':
            n_classes = class_tree.get_size() - 1
            leaves = class_tree.find_leaves()
            for leaf in leaves:
                current = np.zeros(n_classes)
                for i in class_tree.name2label(leaf.name):
                    current[i] = 1.0
                for idx in leaf.sup_idx:
                    self.sup_dict[idx] = current 
開發者ID:yumeng5,項目名稱:WeSHClass,代碼行數:42,代碼來源:models.py

示例12: instantiate

# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import RandomUniform [as 別名]
def instantiate(self, class_tree, filter_sizes=[2, 3, 4, 5], num_filters=20, word_trainable=False,
                    word_embedding_dim=100, hidden_dim=20, act='relu', init=RandomUniform(minval=-0.01, maxval=0.01)):
        num_children = len(class_tree.children)
        if num_children <= 1:
            class_tree.model = None
        else:
            class_tree.model = ConvolutionLayer(self.x, self.input_shape[1], filter_sizes=filter_sizes,
                                                n_classes=num_children,
                                                vocab_sz=self.vocab_sz, embedding_matrix=class_tree.embedding,
                                                hidden_dim=hidden_dim,
                                                word_embedding_dim=word_embedding_dim, num_filters=num_filters,
                                                init=init,
                                                word_trainable=word_trainable, act=act) 
開發者ID:yumeng5,項目名稱:WeSHClass,代碼行數:15,代碼來源:models.py

示例13: build

# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import RandomUniform [as 別名]
def build(self, input_shape):
        assert len(input_shape) >= 2
        input_dim = input_shape[1]

        if self.H == 'Glorot':
            self.H = np.float32(np.sqrt(1.5 / (input_dim + self.units)))
            #print('Glorot H: {}'.format(self.H))
        if self.kernel_lr_multiplier == 'Glorot':
            self.kernel_lr_multiplier = np.float32(1. / np.sqrt(1.5 / (input_dim + self.units)))
            #print('Glorot learning rate multiplier: {}'.format(self.kernel_lr_multiplier))
            
        self.kernel_constraint = Clip(-self.H, self.H)
        self.kernel_initializer = initializers.RandomUniform(-self.H, self.H)
        self.kernel = self.add_weight(shape=(input_dim, self.units),
                                     initializer=self.kernel_initializer,
                                     name='kernel',
                                     regularizer=self.kernel_regularizer,
                                     constraint=self.kernel_constraint)

        if self.use_bias:
            self.lr_multipliers = [self.kernel_lr_multiplier, self.bias_lr_multiplier]
            self.bias = self.add_weight(shape=(self.units,),
                                     initializer=self.bias_initializer,
                                     name='bias',
                                     regularizer=self.bias_regularizer,
                                     constraint=self.bias_constraint)
        else:
            self.lr_multipliers = [self.kernel_lr_multiplier]
            self.bias = None

        self.input_spec = InputSpec(min_ndim=2, axes={-1: input_dim})
        self.built = True 
開發者ID:BertMoons,項目名稱:QuantizedNeuralNetworks-Keras-Tensorflow,代碼行數:34,代碼來源:quantized_layers.py

示例14: build

# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import RandomUniform [as 別名]
def build(self, input_shape):
        assert len(input_shape) >= 2
        input_dim = input_shape[-1]
        expert_init_lim = np.sqrt(3.0*self.expert_kernel_initializer_scale / (max(1., float(input_dim + self.units) / 2)))
        gating_init_lim = np.sqrt(3.0*self.gating_kernel_initializer_scale / (max(1., float(input_dim + 1) / 2)))

        self.expert_kernel = self.add_weight(shape=(input_dim, self.units, self.n_experts),
                                      initializer=RandomUniform(minval=-expert_init_lim,maxval=expert_init_lim),
                                      name='expert_kernel',
                                      regularizer=self.expert_kernel_regularizer,
                                      constraint=self.expert_kernel_constraint)

        self.gating_kernel = self.add_weight(shape=(input_dim, self.n_experts),
                                      initializer=RandomUniform(minval=-gating_init_lim,maxval=gating_init_lim),
                                      name='gating_kernel',
                                      regularizer=self.gating_kernel_regularizer,
                                      constraint=self.gating_kernel_constraint)

        if self.use_expert_bias:
            self.expert_bias = self.add_weight(shape=(self.units, self.n_experts),
                                        initializer=self.expert_bias_initializer,
                                        name='expert_bias',
                                        regularizer=self.expert_bias_regularizer,
                                        constraint=self.expert_bias_constraint)
        else:
            self.expert_bias = None

        if self.use_gating_bias:
            self.gating_bias = self.add_weight(shape=(self.n_experts,),
                                        initializer=self.gating_bias_initializer,
                                        name='gating_bias',
                                        regularizer=self.gating_bias_regularizer,
                                        constraint=self.gating_bias_constraint)
        else:
            self.gating_bias = None

        self.input_spec = InputSpec(min_ndim=2, axes={-1: input_dim})
        self.built = True 
開發者ID:eminorhan,項目名稱:mixture-of-experts,代碼行數:40,代碼來源:DenseMoE.py

示例15: __init__

# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import RandomUniform [as 別名]
def __init__(self, output_dim, initializer=None, betas=1.0, **kwargs):
        self.output_dim = output_dim
        self.init_betas = betas
        if not initializer:
            self.initializer = RandomUniform(0.0, 1.0)
        else:
            self.initializer = initializer
        super(RBFLayer, self).__init__(**kwargs) 
開發者ID:PetraVidnerova,項目名稱:rbf_keras,代碼行數:10,代碼來源:rbflayer.py


注:本文中的keras.initializers.RandomUniform方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。