當前位置: 首頁>>代碼示例>>Python>>正文


Python initializers.Ones方法代碼示例

本文整理匯總了Python中keras.initializers.Ones方法的典型用法代碼示例。如果您正苦於以下問題:Python initializers.Ones方法的具體用法?Python initializers.Ones怎麽用?Python initializers.Ones使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.initializers的用法示例。


在下文中一共展示了initializers.Ones方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import Ones [as 別名]
def __init__(self, output_dim, **kwargs):
        self.output_dim = output_dim
        super(ScaleLayer, self).__init__(**kwargs)

        def build(self, input_shape):
            # Create a trainable weight variable # for this layer.
            self.weights = self.add_weight(
                name='weights',
                shape=(input_shape[1], self.output_dim),
                initializer=Ones(),
                trainable=True)
            super(ScaleLayer, self).build(input_shape)
            # Be sure to call  this at the end

        def call(self, x):
            return x * self.weights

        def compute_output_shape(self, input_shape):
            return (input_shape[0], self.output_dim) 
開發者ID:PacktPublishing,項目名稱:Hands-On-Generative-Adversarial-Networks-with-Keras,代碼行數:21,代碼來源:models.py

示例2: build

# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import Ones [as 別名]
def build(self, input_shape):
        self._g = self.add_weight(
            name='gain', 
            shape=(input_shape[-1],),
            initializer=Ones(),
            trainable=True
        )
        self._b = self.add_weight(
            name='bias', 
            shape=(input_shape[-1],),
            initializer=Zeros(),
            trainable=True
        ) 
開發者ID:zimmerrol,項目名稱:keras-utility-layer-collection,代碼行數:15,代碼來源:layer_normalization.py

示例3: build

# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import Ones [as 別名]
def build(self, input_shape):
        self.gamma = self.add_weight(name='gamma', shape=input_shape[-1:], initializer=Ones(), trainable=True)
        self.beta = self.add_weight(name='beta', shape=input_shape[-1:], initializer=Zeros(), trainable=True)
        super().build(input_shape) 
開發者ID:yyht,項目名稱:BERT,代碼行數:6,代碼來源:layers.py

示例4: build

# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import Ones [as 別名]
def build(self, input_shape):
        self.gamma = self.add_weight(name='gamma', shape=input_shape[-1:],
                                     initializer=Ones(), trainable=True)
        self.beta = self.add_weight(name='beta', shape=input_shape[-1:],
                                    initializer=Zeros(), trainable=True)
        super(LayerNormalization, self).build(input_shape) 
開發者ID:GlassyWing,項目名稱:transformer-keras,代碼行數:8,代碼來源:core.py

示例5: build

# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import Ones [as 別名]
def build(self, input_shape):
        input_dim = input_shape[-1]
        self.kernels = []
        self.biases = []

        for i in range(self.depth):
            if i == 0:
                input_kernel = self.add_weight(shape=(input_dim, self.units * 4),
                                               name='input_kernel_%d' % (i + 1),
                                               initializer=self.kernel_initializer,
                                               regularizer=self.kernel_regularizer,
                                               constraint=self.kernel_constraint)
                hidden_kernel = self.add_weight(shape=(self.units, self.units * 4),
                                                name='kernel_%d' % (i + 1),
                                                initializer=self.recurrent_initializer,
                                                regularizer=self.recurrent_regularizer,
                                                constraint=self.recurrent_constraint)
                kernel = K.concatenate([input_kernel, hidden_kernel], axis=0)
            else:
                kernel = self.add_weight(shape=(self.units * 2, self.units * 4),
                                         name='kernel_%d' % (i + 1),
                                         initializer=self.recurrent_initializer,
                                         regularizer=self.recurrent_regularizer,
                                         constraint=self.recurrent_constraint)
            self.kernels.append(kernel)

        if self.use_bias:
            if self.unit_forget_bias:
                def bias_initializer(_, *args, **kwargs):
                    return K.concatenate([
                        self.bias_initializer((self.units,), *args, **kwargs),
                        initializers.Ones()((self.units,), *args, **kwargs),
                        self.bias_initializer((self.units * 2,), *args, **kwargs),
                    ])
            else:
                bias_initializer = self.bias_initializer

            for i in range(self.depth):
                bias = self.add_weight(shape=(self.units * 4,),
                                       name='bias_%d' % (i + 1),
                                       initializer=bias_initializer,
                                       regularizer=self.bias_regularizer,
                                       constraint=self.bias_constraint)
                self.biases.append(bias)
        else:
            self.biases = None

        self.built = True 
開發者ID:titu1994,項目名稱:Nested-LSTM,代碼行數:50,代碼來源:nested_lstm.py

示例6: tp1_node_update

# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import Ones [as 別名]
def tp1_node_update(graph_node_embs, node_rel, node_rel_weight, max_nodes, max_bi_relations, embed_dim, label):
    """
    graph_node_embs has shape (batch_size, max_nodes per graph, embed_dim feats).
    """
    dense_dim = embed_dim

    x = gather_layer([graph_node_embs, node_rel])
    logging.debug('After gather3 shape: {0}'.format(x.shape))

    x = Reshape((max_nodes * max_bi_relations, 2 * embed_dim))(x)

    x = TimeDistributed(
        Dense(
            dense_dim,
            kernel_initializer=initializers.Ones(),
            bias_initializer=initializers.Zeros(),
            name=label + '_dense1'))(x)
    # TODO: re-enable the batch normalization.
    # x = BatchNormalization(axis=2, name=label + '_bn1')(x)
    x = Activation('relu')(x)
    x = TimeDistributed(
        Dense(
            dense_dim,
            kernel_initializer=initializers.Ones(),
            bias_initializer=initializers.Zeros(),
            name=label + '_dense2'))(x)
    # x = BatchNormalization(axis=2, name=label + '_bn2')(x)
    x = Activation('relu')(x)

    normalizer = Reshape((max_nodes * max_bi_relations,))(node_rel_weight)
    normalizer = RepeatVector(dense_dim)(normalizer)
    normalizer = Permute((2, 1))(normalizer)

    x = Multiply()([x, normalizer])
    x = Reshape((max_nodes, max_bi_relations, dense_dim))(x)

    x = Lambda(
        lambda xin: K.sum(xin, axis=2),
        output_shape=(None, max_nodes * max_bi_relations, dense_dim),
        name=label + '_integrate')(x)
    return x

# TODO: Dense use_bias=True 
開發者ID:mynlp,項目名稱:ccg2lambda,代碼行數:45,代碼來源:graph_emb.py


注:本文中的keras.initializers.Ones方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。