本文整理匯總了Python中keras.initializers.Constant方法的典型用法代碼示例。如果您正苦於以下問題:Python initializers.Constant方法的具體用法?Python initializers.Constant怎麽用?Python initializers.Constant使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類keras.initializers
的用法示例。
在下文中一共展示了initializers.Constant方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: get_shallow_convnet
# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import Constant [as 別名]
def get_shallow_convnet(window_size=4096, channels=2, output_size=84):
inputs = Input(shape=(window_size, channels))
conv = ComplexConv1D(
32, 512, strides=16,
activation='relu')(inputs)
pool = AveragePooling1D(pool_size=4, strides=2)(conv)
pool = Permute([2, 1])(pool)
flattened = Flatten()(pool)
dense = ComplexDense(2048, activation='relu')(flattened)
predictions = ComplexDense(
output_size,
activation='sigmoid',
bias_initializer=Constant(value=-5))(dense)
predictions = GetReal(predictions)
model = Model(inputs=inputs, outputs=predictions)
model.compile(optimizer=Adam(lr=1e-4),
loss='binary_crossentropy',
metrics=['accuracy'])
return model
示例2: RHN
# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import Constant [as 別名]
def RHN(input_dim, hidden_dim, depth):
# Wrapped model
inp = Input(batch_shape=(batch_size, input_dim))
state = Input(batch_shape=(batch_size, hidden_dim))
drop_mask = Input(batch_shape=(batch_size, hidden_dim))
# To avoid all zero mask causing gradient to vanish
inverted_drop_mask = Lambda(lambda x: 1.0 - x, output_shape=lambda s: s)(drop_mask)
drop_mask_2 = Lambda(lambda x: x + 0., output_shape=lambda s: s)(inverted_drop_mask)
dropped_state = multiply([state, inverted_drop_mask])
y, new_state = RHNCell(units=hidden_dim, recurrence_depth=depth,
kernel_initializer=weight_init,
kernel_regularizer=l2(weight_decay),
kernel_constraint=max_norm(gradient_clip),
bias_initializer=Constant(transform_bias),
recurrent_initializer=weight_init,
recurrent_regularizer=l2(weight_decay),
recurrent_constraint=max_norm(gradient_clip))([inp, dropped_state])
return RecurrentModel(input=inp, output=y,
initial_states=[state, drop_mask],
final_states=[new_state, drop_mask_2])
# lr decay Scheduler
示例3: QRNcell
# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import Constant [as 別名]
def QRNcell():
xq = Input(batch_shape=(batch_size, embedding_dim * 2))
# Split into context and query
xt = Lambda(lambda x, dim: x[:, :dim], arguments={'dim': embedding_dim},
output_shape=lambda s: (s[0], s[1] / 2))(xq)
qt = Lambda(lambda x, dim: x[:, dim:], arguments={'dim': embedding_dim},
output_shape=lambda s: (s[0], s[1] / 2))(xq)
h_tm1 = Input(batch_shape=(batch_size, embedding_dim))
zt = Dense(1, activation='sigmoid', bias_initializer=Constant(2.5))(multiply([xt, qt]))
zt = Lambda(lambda x, dim: K.repeat_elements(x, dim, axis=1), arguments={'dim': embedding_dim})(zt)
ch = Dense(embedding_dim, activation='tanh')(concatenate([xt, qt], axis=-1))
rt = Dense(1, activation='sigmoid')(multiply([xt, qt]))
rt = Lambda(lambda x, dim: K.repeat_elements(x, dim, axis=1), arguments={'dim': embedding_dim})(rt)
ht = add([multiply([zt, ch, rt]), multiply([Lambda(lambda x: 1 - x, output_shape=lambda s: s)(zt), h_tm1])])
return RecurrentModel(input=xq, output=ht, initial_states=[h_tm1], final_states=[ht], return_sequences=True)
#
# Load data
#
示例4: build
# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import Constant [as 別名]
def build(self, input_shape):
hadamard_size = 2 ** int(math.ceil(math.log(max(input_shape[1], self.output_dim), 2)))
self.hadamard = K.constant(
value=hadamard(hadamard_size, dtype=np.int8)[:input_shape[1], :self.output_dim])
init_scale = 1. / math.sqrt(self.output_dim)
self.scale = self.add_weight(name='scale',
shape=(1,),
initializer=Constant(init_scale),
trainable=True)
if self.use_bias:
self.bias = self.add_weight(name='bias',
shape=(self.output_dim,),
initializer=RandomUniform(-init_scale, init_scale),
trainable=True)
super(HadamardClassifier, self).build(input_shape)
示例5: highway_keras
# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import Constant [as 別名]
def highway_keras(x):
# writter by my own
# paper; Highway Network(http://arxiv.org/abs/1505.00387).
# 公式
# 1. s = sigmoid(Wx + b)
# 2. z = s * relu(Wx + b) + (1 - s) * x
# x shape : [N * time_depth, sum(filters)]
# Table 1. CIFAR-10 test set accuracy of convolutional highway networks with
# rectified linear activation and sigmoid gates.
# For comparison, results reported by Romero et al. (2014)
# using maxout networks are also shown.
# Fitnets were trained using a two step training procedure using soft targets from the trained Teacher network,
# which was trained using backpropagation. We trained all highway networks directly using backpropagation.
# * indicates networks which were trained only on a set of 40K out of 50K examples in the training set.
# Figure 2. Visualization of certain internals of the blocks in the best 50 hidden layer highway networks trained on MNIST
# (top row) and CIFAR-100 (bottom row). The first hidden layer is a plain layer which changes the dimensionality of the representation to 50. Each of
# the 49 highway layers (y-axis) consists of 50 blocks (x-axis).
# The first column shows the transform gate biases, which were initialized to -2 and -4 respectively.
# In the second column the mean output of the transform gate over 10,000 training examples is depicted.
# The third and forth columns show the output of the transform gates and
# the block outputs for a single random training sample.
gate_transform = Dense(units=K.int_shape(x)[1],
activation='sigmoid',
use_bias=True,
kernel_initializer='glorot_uniform',
bias_initializer=keras.initializers.Constant(value=-2))(x)
gate_cross = 1 - gate_transform
block_state = Dense(units=K.int_shape(x)[1],
activation='relu',
use_bias=True,
kernel_initializer='glorot_uniform',
bias_initializer='zero')(x)
high_way = gate_transform * block_state + gate_cross * x
return high_way
示例6: build
# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import Constant [as 別名]
def build(self, input_shape):
# Create a trainable weight variable for this layer.
dim = input_shape[-1]
self.dense_1 = Dense(units=dim, bias_initializer=Constant(self.transform_gate_bias))
self.dense_1.build(input_shape)
self.dense_2 = Dense(units=dim)
self.dense_2.build(input_shape)
self.trainable_weights = self.dense_1.trainable_weights + self.dense_2.trainable_weights
super(Highway, self).build(input_shape) # Be sure to call this at the end
示例7: build
# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import Constant [as 別名]
def build(self, input_shape):
assert len(input_shape) == 3
_, sequence_length, d_model = input_shape
self.halting_kernel = self.add_weight(
name='halting_kernel',
shape=(d_model, 1),
initializer='glorot_uniform',
trainable=True)
self.halting_biases = self.add_weight(
name='halting_biases',
shape=(1,),
initializer=initializers.Constant(0.1),
trainable=True)
self.time_penalty_t = K.constant(self.time_penalty, dtype=K.floatx())
return super().build(input_shape)
示例8: get_highway_output
# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import Constant [as 別名]
def get_highway_output(highway_input, nb_layers, activation="tanh", bias=-3):
dim = K.int_shape(highway_input)[-1] # dimension must be the same
initial_bias = k_init.Constant(bias)
for n in range(nb_layers):
H = Dense(units=dim, bias_initializer=initial_bias)(highway_input)
H = Activation("sigmoid")(H)
carry_gate = Lambda(lambda x: 1.0 - x,
output_shape=(dim,))(H)
transform_gate = Dense(units=dim)(highway_input)
transform_gate = Activation(activation)(transform_gate)
transformed = Multiply()([H, transform_gate])
carried = Multiply()([carry_gate, highway_input])
highway_output = Add()([transformed, carried])
return highway_output
示例9: fGetActivation
# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import Constant [as 別名]
def fGetActivation(input_t, iPReLU=0):
init = 0.25
if iPReLU == 1: # one alpha for each channel
output_t = PReLU(alpha_initializer=Constant(value=init), shared_axes=[2, 3, 4])(input_t)
elif iPReLU == 2: # just one alpha for each layer
output_t = PReLU(alpha_initializer=Constant(value=init), shared_axes=[2, 3, 4, 1])(input_t)
else:
output_t = Activation('relu')(input_t)
return output_t
示例10: fGetActivation
# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import Constant [as 別名]
def fGetActivation(input_t, iPReLU=0):
init=0.25
if iPReLU == 1: # one alpha for each channel
output_t = PReLU(alpha_initializer=Constant(value=init), shared_axes=[2, 3, 4])(input_t)
elif iPReLU == 2: # just one alpha for each layer
output_t = PReLU(alpha_initializer=Constant(value=init), shared_axes=[2, 3, 4, 1])(input_t)
else:
output_t = Activation('relu')(input_t)
return output_t
示例11: test_constant
# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import Constant [as 別名]
def test_constant(tensor_shape):
_runner(initializers.Constant(2), tensor_shape,
target_mean=2, target_max=2, target_min=2)
示例12: bilinear2x
# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import Constant [as 別名]
def bilinear2x(x, nfilters):
'''
Ugh, I don't like making layers.
My credit goes to: https://kivantium.net/keras-bilinear
'''
return Conv2DTranspose(nfilters, (4, 4),
strides=(2, 2),
padding='same',
kernel_initializer=Constant(bilinear_upsample_weights(2, nfilters)))(x)
示例13: build
# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import Constant [as 別名]
def build(self, input_shape):
# Create a trainable weight variable for this layer.
dim = input_shape[-1]
transform_gate_bias_initializer = Constant(self.transform_gate_bias)
input_shape_dense_1 = input_shape[-1]
self.dense_1 = Dense(units=dim, bias_initializer=transform_gate_bias_initializer)
self.dense_1.build(input_shape)
self.dense_2 = Dense(units=dim)
self.dense_2.build(input_shape)
self.trainable_weights = self.dense_1.trainable_weights + self.dense_2.trainable_weights
super(Highway, self).build(input_shape) # Be sure to call this at the end
示例14: build_network
# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import Constant [as 別名]
def build_network(input_features=None):
const_initializer = Constant(value=0)
# first we specify an input layer, with a shape == features
inputs = Input(shape=(input_features,), name="input")
x = Dense(32, activation='relu', name="hidden1", kernel_initializer=const_initializer, bias_initializer='ones')(inputs)
x = Dense(32, activation='relu', name="hidden2", kernel_initializer=const_initializer, bias_initializer='ones')(x)
x = Dense(32, activation='relu', name="hidden3", kernel_initializer=const_initializer, bias_initializer='ones')(x)
x = Dense(32, activation='relu', name="hidden4", kernel_initializer=const_initializer, bias_initializer='ones')(x)
x = Dense(16, activation='relu', name="hidden5", kernel_initializer=const_initializer, bias_initializer='ones')(x)
# for regression we will use a single neuron with linear (no) activation
prediction = Dense(1, activation='linear', name="final", kernel_initializer=const_initializer, bias_initializer='ones')(x)
model = Model(inputs=inputs, outputs=prediction)
model.compile(optimizer='adam', loss='mean_absolute_error')
return model
開發者ID:PacktPublishing,項目名稱:Deep-Learning-Quick-Reference,代碼行數:17,代碼來源:keras_regression_deep_broken.py
示例15: build
# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import Constant [as 別名]
def build(self, input_shape):
self.centers = self.add_weight(name='centers',
shape=(self.output_dim, input_shape[1]),
initializer=self.initializer,
trainable=True)
self.betas = self.add_weight(name='betas',
shape=(self.output_dim,),
initializer=Constant(
value=self.init_betas),
# initializer='ones',
trainable=True)
super(RBFLayer, self).build(input_shape)