當前位置: 首頁>>代碼示例>>Python>>正文


Python initializers.Constant方法代碼示例

本文整理匯總了Python中keras.initializers.Constant方法的典型用法代碼示例。如果您正苦於以下問題:Python initializers.Constant方法的具體用法?Python initializers.Constant怎麽用?Python initializers.Constant使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.initializers的用法示例。


在下文中一共展示了initializers.Constant方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_shallow_convnet

# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import Constant [as 別名]
def get_shallow_convnet(window_size=4096, channels=2, output_size=84):
    inputs = Input(shape=(window_size, channels))

    conv = ComplexConv1D(
        32, 512, strides=16,
        activation='relu')(inputs)
    pool = AveragePooling1D(pool_size=4, strides=2)(conv)

    pool = Permute([2, 1])(pool)
    flattened = Flatten()(pool)

    dense = ComplexDense(2048, activation='relu')(flattened)
    predictions = ComplexDense(
        output_size, 
        activation='sigmoid',
        bias_initializer=Constant(value=-5))(dense)
    predictions = GetReal(predictions)
    model = Model(inputs=inputs, outputs=predictions)

    model.compile(optimizer=Adam(lr=1e-4),
                  loss='binary_crossentropy',
                  metrics=['accuracy'])
    return model 
開發者ID:ChihebTrabelsi,項目名稱:deep_complex_networks,代碼行數:25,代碼來源:__init__.py

示例2: RHN

# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import Constant [as 別名]
def RHN(input_dim, hidden_dim, depth):
    # Wrapped model
    inp = Input(batch_shape=(batch_size, input_dim))
    state = Input(batch_shape=(batch_size, hidden_dim))
    drop_mask = Input(batch_shape=(batch_size, hidden_dim))
    # To avoid all zero mask causing gradient to vanish
    inverted_drop_mask = Lambda(lambda x: 1.0 - x, output_shape=lambda s: s)(drop_mask)
    drop_mask_2 = Lambda(lambda x: x + 0., output_shape=lambda s: s)(inverted_drop_mask)
    dropped_state = multiply([state, inverted_drop_mask])
    y, new_state = RHNCell(units=hidden_dim, recurrence_depth=depth,
                           kernel_initializer=weight_init,
                           kernel_regularizer=l2(weight_decay),
                           kernel_constraint=max_norm(gradient_clip),
                           bias_initializer=Constant(transform_bias),
                           recurrent_initializer=weight_init,
                           recurrent_regularizer=l2(weight_decay),
                           recurrent_constraint=max_norm(gradient_clip))([inp, dropped_state])
    return RecurrentModel(input=inp, output=y,
                          initial_states=[state, drop_mask],
                          final_states=[new_state, drop_mask_2])


# lr decay Scheduler 
開發者ID:farizrahman4u,項目名稱:recurrentshop,代碼行數:25,代碼來源:recurrent_highway_networks.py

示例3: QRNcell

# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import Constant [as 別名]
def QRNcell():
    xq = Input(batch_shape=(batch_size, embedding_dim * 2))
    # Split into context and query
    xt = Lambda(lambda x, dim: x[:, :dim], arguments={'dim': embedding_dim},
                output_shape=lambda s: (s[0], s[1] / 2))(xq)
    qt = Lambda(lambda x, dim: x[:, dim:], arguments={'dim': embedding_dim},
                output_shape=lambda s: (s[0], s[1] / 2))(xq)

    h_tm1 = Input(batch_shape=(batch_size, embedding_dim))

    zt = Dense(1, activation='sigmoid', bias_initializer=Constant(2.5))(multiply([xt, qt]))
    zt = Lambda(lambda x, dim: K.repeat_elements(x, dim, axis=1), arguments={'dim': embedding_dim})(zt)
    ch = Dense(embedding_dim, activation='tanh')(concatenate([xt, qt], axis=-1))
    rt = Dense(1, activation='sigmoid')(multiply([xt, qt]))
    rt = Lambda(lambda x, dim: K.repeat_elements(x, dim, axis=1), arguments={'dim': embedding_dim})(rt)
    ht = add([multiply([zt, ch, rt]), multiply([Lambda(lambda x: 1 - x, output_shape=lambda s: s)(zt), h_tm1])])
    return RecurrentModel(input=xq, output=ht, initial_states=[h_tm1], final_states=[ht], return_sequences=True)


#
# Load data
# 
開發者ID:farizrahman4u,項目名稱:recurrentshop,代碼行數:24,代碼來源:query_reduction_network.py

示例4: build

# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import Constant [as 別名]
def build(self, input_shape):

        hadamard_size = 2 ** int(math.ceil(math.log(max(input_shape[1], self.output_dim), 2)))
        self.hadamard = K.constant(
            value=hadamard(hadamard_size, dtype=np.int8)[:input_shape[1], :self.output_dim])

        init_scale = 1. / math.sqrt(self.output_dim)

        self.scale = self.add_weight(name='scale', 
                                      shape=(1,),
                                      initializer=Constant(init_scale),
                                      trainable=True)

        if self.use_bias:
            self.bias  = self.add_weight(name='bias', 
                                          shape=(self.output_dim,),
                                          initializer=RandomUniform(-init_scale, init_scale),
                                          trainable=True)

        super(HadamardClassifier, self).build(input_shape) 
開發者ID:antorsae,項目名稱:landmark-recognition-challenge,代碼行數:22,代碼來源:hadamard.py

示例5: highway_keras

# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import Constant [as 別名]
def highway_keras(x):
    # writter by my own
    # paper; Highway Network(http://arxiv.org/abs/1505.00387).
    # 公式
    # 1. s = sigmoid(Wx + b)
    # 2. z = s * relu(Wx + b) + (1 - s) * x
    # x shape : [N * time_depth, sum(filters)]

    # Table 1. CIFAR-10 test set accuracy of convolutional highway networks with
    # rectified linear activation and sigmoid gates.
    # For comparison, results reported by Romero et al. (2014)
    # using maxout networks are also shown.
    # Fitnets were trained using a two step training procedure using soft targets from the trained Teacher network,
    # which was trained using backpropagation. We trained all highway networks directly using backpropagation.
    # * indicates networks which were trained only on a set of 40K out of 50K examples in the training set.



    # Figure 2. Visualization of certain internals of the blocks in the best 50 hidden layer highway networks trained on MNIST
    # (top row) and CIFAR-100 (bottom row). The first hidden layer is a plain layer which changes the dimensionality of the representation to 50. Each of
    # the 49 highway layers (y-axis) consists of 50 blocks (x-axis).
    # The first column shows the transform gate biases, which were initialized to -2 and -4 respectively.
    # In the second column the mean output of the transform gate over 10,000 training examples is depicted.
    # The third and forth columns show the output of the transform gates and
    # the block outputs for a single random training sample.

    gate_transform = Dense(units=K.int_shape(x)[1],
                           activation='sigmoid',
                           use_bias=True,
                           kernel_initializer='glorot_uniform',
                           bias_initializer=keras.initializers.Constant(value=-2))(x)
    gate_cross = 1 - gate_transform
    block_state = Dense(units=K.int_shape(x)[1],
                        activation='relu',
                        use_bias=True,
                        kernel_initializer='glorot_uniform',
                        bias_initializer='zero')(x)
    high_way = gate_transform * block_state + gate_cross * x

    return high_way 
開發者ID:yongzhuo,項目名稱:Keras-TextClassification,代碼行數:42,代碼來源:graph_yoon_kim.py

示例6: build

# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import Constant [as 別名]
def build(self, input_shape):
        # Create a trainable weight variable for this layer.
        dim = input_shape[-1]
        self.dense_1 = Dense(units=dim, bias_initializer=Constant(self.transform_gate_bias))
        self.dense_1.build(input_shape)
        self.dense_2 = Dense(units=dim)
        self.dense_2.build(input_shape)
        self.trainable_weights = self.dense_1.trainable_weights + self.dense_2.trainable_weights
        super(Highway, self).build(input_shape)  # Be sure to call this at the end 
開發者ID:yongzhuo,項目名稱:Keras-TextClassification,代碼行數:11,代碼來源:graph_yoon_kim.py

示例7: build

# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import Constant [as 別名]
def build(self, input_shape):
        assert len(input_shape) == 3
        _, sequence_length, d_model = input_shape
        self.halting_kernel = self.add_weight(
            name='halting_kernel',
            shape=(d_model, 1),
            initializer='glorot_uniform',
            trainable=True)
        self.halting_biases = self.add_weight(
            name='halting_biases',
            shape=(1,),
            initializer=initializers.Constant(0.1),
            trainable=True)
        self.time_penalty_t = K.constant(self.time_penalty, dtype=K.floatx())
        return super().build(input_shape) 
開發者ID:kpot,項目名稱:keras-transformer,代碼行數:17,代碼來源:transformer.py

示例8: get_highway_output

# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import Constant [as 別名]
def get_highway_output(highway_input, nb_layers, activation="tanh", bias=-3):
    dim = K.int_shape(highway_input)[-1]  # dimension must be the same
    initial_bias = k_init.Constant(bias)
    for n in range(nb_layers):
        H = Dense(units=dim, bias_initializer=initial_bias)(highway_input)
        H = Activation("sigmoid")(H)
        carry_gate = Lambda(lambda x: 1.0 - x,
                            output_shape=(dim,))(H)
        transform_gate = Dense(units=dim)(highway_input)
        transform_gate = Activation(activation)(transform_gate)
        transformed = Multiply()([H, transform_gate])
        carried = Multiply()([carry_gate, highway_input])
        highway_output = Add()([transformed, carried])
    return highway_output 
開發者ID:Stevel705,項目名稱:Tacotron-2-keras,代碼行數:16,代碼來源:building_blocks.py

示例9: fGetActivation

# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import Constant [as 別名]
def fGetActivation(input_t, iPReLU=0):
    init = 0.25
    if iPReLU == 1:  # one alpha for each channel
        output_t = PReLU(alpha_initializer=Constant(value=init), shared_axes=[2, 3, 4])(input_t)
    elif iPReLU == 2:  # just one alpha for each layer
        output_t = PReLU(alpha_initializer=Constant(value=init), shared_axes=[2, 3, 4, 1])(input_t)
    else:
        output_t = Activation('relu')(input_t)
    return output_t 
開發者ID:thomaskuestner,項目名稱:CNNArt,代碼行數:11,代碼來源:CNN3DmoreLayers.py

示例10: fGetActivation

# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import Constant [as 別名]
def fGetActivation(input_t,  iPReLU=0):
    init=0.25
    if iPReLU == 1:  # one alpha for each channel
        output_t = PReLU(alpha_initializer=Constant(value=init), shared_axes=[2, 3, 4])(input_t)
    elif iPReLU == 2:  # just one alpha for each layer
        output_t = PReLU(alpha_initializer=Constant(value=init), shared_axes=[2, 3, 4, 1])(input_t)
    else:
        output_t = Activation('relu')(input_t)
    return output_t 
開發者ID:thomaskuestner,項目名稱:CNNArt,代碼行數:11,代碼來源:motion_CNN3DmoreLayers.py

示例11: test_constant

# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import Constant [as 別名]
def test_constant(tensor_shape):
    _runner(initializers.Constant(2), tensor_shape,
            target_mean=2, target_max=2, target_min=2) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:5,代碼來源:initializers_test.py

示例12: bilinear2x

# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import Constant [as 別名]
def bilinear2x(x, nfilters):
	'''
    Ugh, I don't like making layers.
    My credit goes to: https://kivantium.net/keras-bilinear
    '''
	return Conv2DTranspose(nfilters, (4, 4),
        strides=(2, 2),
        padding='same',
		kernel_initializer=Constant(bilinear_upsample_weights(2, nfilters)))(x) 
開發者ID:forcecore,項目名稱:Keras-GAN-Animeface-Character,代碼行數:11,代碼來源:layers.py

示例13: build

# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import Constant [as 別名]
def build(self, input_shape):
        # Create a trainable weight variable for this layer.
        dim = input_shape[-1]
        transform_gate_bias_initializer = Constant(self.transform_gate_bias)
        input_shape_dense_1 = input_shape[-1]
        self.dense_1 = Dense(units=dim, bias_initializer=transform_gate_bias_initializer)
        self.dense_1.build(input_shape)
        self.dense_2 = Dense(units=dim)
        self.dense_2.build(input_shape)
        self.trainable_weights = self.dense_1.trainable_weights + self.dense_2.trainable_weights

        super(Highway, self).build(input_shape)  # Be sure to call this at the end 
開發者ID:ParikhKadam,項目名稱:bidaf-keras,代碼行數:14,代碼來源:highway_layer.py

示例14: build_network

# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import Constant [as 別名]
def build_network(input_features=None):
    const_initializer = Constant(value=0)
    # first we specify an input layer, with a shape == features
    inputs = Input(shape=(input_features,), name="input")
    x = Dense(32, activation='relu', name="hidden1", kernel_initializer=const_initializer, bias_initializer='ones')(inputs)
    x = Dense(32, activation='relu', name="hidden2", kernel_initializer=const_initializer, bias_initializer='ones')(x)
    x = Dense(32, activation='relu', name="hidden3", kernel_initializer=const_initializer, bias_initializer='ones')(x)
    x = Dense(32, activation='relu', name="hidden4", kernel_initializer=const_initializer, bias_initializer='ones')(x)
    x = Dense(16, activation='relu', name="hidden5", kernel_initializer=const_initializer, bias_initializer='ones')(x)
    # for regression we will use a single neuron with linear (no) activation
    prediction = Dense(1, activation='linear', name="final", kernel_initializer=const_initializer, bias_initializer='ones')(x)

    model = Model(inputs=inputs, outputs=prediction)
    model.compile(optimizer='adam', loss='mean_absolute_error')
    return model 
開發者ID:PacktPublishing,項目名稱:Deep-Learning-Quick-Reference,代碼行數:17,代碼來源:keras_regression_deep_broken.py

示例15: build

# 需要導入模塊: from keras import initializers [as 別名]
# 或者: from keras.initializers import Constant [as 別名]
def build(self, input_shape):

        self.centers = self.add_weight(name='centers',
                                       shape=(self.output_dim, input_shape[1]),
                                       initializer=self.initializer,
                                       trainable=True)
        self.betas = self.add_weight(name='betas',
                                     shape=(self.output_dim,),
                                     initializer=Constant(
                                         value=self.init_betas),
                                     # initializer='ones',
                                     trainable=True)

        super(RBFLayer, self).build(input_shape) 
開發者ID:PetraVidnerova,項目名稱:rbf_keras,代碼行數:16,代碼來源:rbflayer.py


注:本文中的keras.initializers.Constant方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。