當前位置: 首頁>>代碼示例>>Python>>正文


Python topology.Layer方法代碼示例

本文整理匯總了Python中keras.engine.topology.Layer方法的典型用法代碼示例。如果您正苦於以下問題:Python topology.Layer方法的具體用法?Python topology.Layer怎麽用?Python topology.Layer使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.engine.topology的用法示例。


在下文中一共展示了topology.Layer方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from keras.engine import topology [as 別名]
# 或者: from keras.engine.topology import Layer [as 別名]
def __init__(self,
                 W_regularizer=None,
                 b_regularizer=None,
                 W_constraint=None,
                 b_constraint=None,
                 bias=True, **kwargs):
        """
            Keras Layer that implements an Content Attention mechanism.
            Supports Masking.
        """
        self.supports_masking = True
        self.init = initializers.get('glorot_uniform')

        self.W_regularizer = regularizers.get(W_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)
        self.W_constraint = constraints.get(W_constraint)
        self.b_constraint = constraints.get(b_constraint)

        self.bias = bias
        super(Attention, self).__init__(**kwargs) 
開發者ID:madrugado,項目名稱:Attention-Based-Aspect-Extraction,代碼行數:22,代碼來源:my_layers.py

示例2: __init__

# 需要導入模塊: from keras.engine import topology [as 別名]
# 或者: from keras.engine.topology import Layer [as 別名]
def __init__(self, 
                 W_regularizer=None, b_regularizer=None,
                 W_constraint=None, b_constraint=None,
                 bias=True, **kwargs):
        """
        Keras Layer that implements an Content Attention mechanism.
        Supports Masking.
        """
       
        self.supports_masking = True
        self.init = initializers.get('glorot_uniform')

        self.W_regularizer = regularizers.get(W_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)

        self.W_constraint = constraints.get(W_constraint)
        self.b_constraint = constraints.get(b_constraint)

        self.bias = bias
        super(Attention, self).__init__(**kwargs) 
開發者ID:ruidan,項目名稱:Aspect-level-sentiment,代碼行數:22,代碼來源:my_layers.py

示例3: __init__

# 需要導入模塊: from keras.engine import topology [as 別名]
# 或者: from keras.engine.topology import Layer [as 別名]
def __init__(self, W_regularizer=None, b_regularizer=None,
                 W_constraint=None, b_constraint=None,
                 bias=True, **kwargs):
        """
        Keras Layer that implements an Content Attention mechanism.
        Supports Masking.
        """
        self.supports_masking = True
        self.init = initializations.get('glorot_uniform')

        self.W_regularizer = regularizers.get(W_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)
        self.W_constraint = constraints.get(W_constraint)
        self.b_constraint = constraints.get(b_constraint)

        self.bias = bias
        super(Attention, self).__init__(**kwargs) 
開發者ID:ruidan,項目名稱:Unsupervised-Aspect-Extraction,代碼行數:19,代碼來源:my_layers.py

示例4: __init__

# 需要導入模塊: from keras.engine import topology [as 別名]
# 或者: from keras.engine.topology import Layer [as 別名]
def __init__(self,
                 W_regularizer=None, b_regularizer=None,
                 W_constraint=None, b_constraint=None,
                 bias=True,
                 return_attention=False,
                 **kwargs):
        """
        Keras Layer that implements an Attention mechanism for temporal data.
        Supports Masking.
        Follows the work of Raffel et al. [https://arxiv.org/abs/1512.08756]
        # Input shape
            3D tensor with shape: `(samples, steps, features)`.
        # Output shape
            2D tensor with shape: `(samples, features)`.
        :param kwargs:
        Just put it on top of an RNN Layer (GRU/LSTM/SimpleRNN) with return_sequences=True.
        The dimensions are inferred based on the output shape of the RNN.
        Note: The layer has been tested with Keras 1.x
        Example:

            # 1
            model.add(LSTM(64, return_sequences=True))
            model.add(Attention())
            # next add a Dense layer (for classification/regression) or whatever...
            # 2 - Get the attention scores
            hidden = LSTM(64, return_sequences=True)(words)
            sentence, word_scores = Attention(return_attention=True)(hidden)
        """
        self.supports_masking = True
        self.return_attention = return_attention
        self.init = initializers.get('glorot_uniform')

        self.W_regularizer = regularizers.get(W_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)

        self.W_constraint = constraints.get(W_constraint)
        self.b_constraint = constraints.get(b_constraint)

        self.bias = bias
        super(Attention, self).__init__(**kwargs) 
開發者ID:cbaziotis,項目名稱:keras-utilities,代碼行數:42,代碼來源:layers.py

示例5: createModel

# 需要導入模塊: from keras.engine import topology [as 別名]
# 或者: from keras.engine.topology import Layer [as 別名]
def createModel(patchSize, dHyper, dParam):
    # input corrupted and non-corrupted image
    x_ref = Input(shape=(1, patchSize[0], patchSize[1]))
    x_art = Input(shape=(1, patchSize[0], patchSize[1]))

    encoded_ref, conv_1_ref = encode(x_ref, patchSize)
    encoded_art, conv_1_art = encode(x_art, patchSize)

    # concatenate the encoded features together
    conv_1 = concatenate([conv_1_ref, conv_1_art], axis=0)
    conv_2 = concatenate([encoded_ref, encoded_art], axis=0)

    # create the shared encoder
    z, z_mean, z_log_var, conv_3, conv_4 = encode_shared(conv_2, patchSize)

    # create the decoder
    decoded = decode(z, patchSize, conv_1, conv_2, conv_3, conv_4, dHyper['arch'])

    # separate the concatenated images
    decoded_ref2ref = Lambda(lambda input: input[:input.shape[0]//2, :, :, :], output_shape=(1, patchSize[0], patchSize[1]))(decoded)
    decoded_art2ref = Lambda(lambda input: input[input.shape[0]//2:, :, :, :], output_shape=(1, patchSize[0], patchSize[1]))(decoded)

    # input to CustomLoss Layer
    [decoded_ref2ref, decoded_art2ref] = CustomLossLayer(dHyper, patchSize, dParam)([x_ref, decoded_ref2ref, decoded_art2ref, z_log_var, z_mean])

    # generate the VAE and encoder model
    vae = Model([x_ref, x_art], [decoded_ref2ref, decoded_art2ref])

    return vae 
開發者ID:thomaskuestner,項目名稱:CNNArt,代碼行數:31,代碼來源:motion_VAE2D.py

示例6: build_vae

# 需要導入模塊: from keras.engine import topology [as 別名]
# 或者: from keras.engine.topology import Layer [as 別名]
def build_vae(patchSize, dHyper):
    # input corrupted and non-corrupted image
    x_ref = Input(shape=(1, patchSize[0], patchSize[1]))
    x_art = Input(shape=(1, patchSize[0], patchSize[1]))

    # create respective encoders
    encoded_ref = encode(x_ref, patchSize)
    encoded_art = encode(x_art, patchSize)

    # concatenate the encoded features together
    combined = concatenate([encoded_ref, encoded_art], axis=0)

    # create the shared encoder
    z, z_mean, z_log_var = encode_shared(combined, patchSize)

    # create the decoder
    decoded = decode(z, patchSize, dHyper['dropout'])

    # separate the concatenated images
    decoded_ref2ref = Lambda(lambda input: input[:input.shape[0]//2, :, :, :], output_shape=(1, patchSize[0], patchSize[1]))(decoded)
    decoded_art2ref = Lambda(lambda input: input[input.shape[0]//2:, :, :, :], output_shape=(1, patchSize[0], patchSize[1]))(decoded)

    # input to CustomLoss Layer
    [decoded_ref2ref, decoded_art2ref] = CustomLossLayer(dHyper, patchSize)([x_ref, decoded_ref2ref, decoded_art2ref, z_log_var, z_mean])

    # generate the VAE and encoder model
    vae = Model([x_ref, x_art], [decoded_ref2ref, decoded_art2ref])

    return vae 
開發者ID:thomaskuestner,項目名稱:CNNArt,代碼行數:31,代碼來源:motion_VAEGAN2D.py

示例7: __init__

# 需要導入模塊: from keras.engine import topology [as 別名]
# 或者: from keras.engine.topology import Layer [as 別名]
def __init__(self, step_dim,
                 W_regularizer=None, b_regularizer=None,
                 W_constraint=None, b_constraint=None,
                 bias=True, **kwargs):
        """
        Keras Layer that implements an Attention mechanism for temporal data.
        Supports Masking.
        Follows the work of Raffel et al. [https://arxiv.org/abs/1512.08756]
        # Input shape
            3D tensor with shape: (samples, steps, features).
        # Output shape
            2D tensor with shape: (samples, features).
        :param kwargs:
        Just put it on top of an RNN Layer (GRU/LSTM/SimpleRNN) with return_sequences=True. # noqa
        The dimensions are inferred based on the output shape of the RNN.
        Example:
            model.add(LSTM(64, return_sequences=True))
            model.add(Attention())
        """
        self.supports_masking = True
        self.init = initializers.get('glorot_uniform')

        self.W_regularizer = regularizers.get(W_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)

        self.W_constraint = constraints.get(W_constraint)
        self.b_constraint = constraints.get(b_constraint)

        self.bias = bias
        self.step_dim = step_dim
        self.features_dim = 0
        super(Attention, self).__init__(**kwargs) 
開發者ID:KevinLiao159,項目名稱:Quora,代碼行數:34,代碼來源:submission_v40.py

示例8: build

# 需要導入模塊: from keras.engine import topology [as 別名]
# 或者: from keras.engine.topology import Layer [as 別名]
def build(self, input_shape):
        super(AttentionLSTM, self).build(input_shape)

        if hasattr(self.attention_vec, '_keras_shape'):
            attention_dim = self.attention_vec._keras_shape[1]
        else:
            raise Exception('Layer could not be build: No information about expected input shape.')

        self.U_a = self.inner_init((self.output_dim, self.output_dim),
                                   name='{}_U_a'.format(self.name))
        self.b_a = K.zeros((self.output_dim,), name='{}_b_a'.format(self.name))

        self.U_m = self.inner_init((attention_dim, self.output_dim),
                                   name='{}_U_m'.format(self.name))
        self.b_m = K.zeros((self.output_dim,), name='{}_b_m'.format(self.name))

        if self.single_attention_param:
            self.U_s = self.inner_init((self.output_dim, 1),
                                       name='{}_U_s'.format(self.name))
            self.b_s = K.zeros((1,), name='{}_b_s'.format(self.name))
        else:
            self.U_s = self.inner_init((self.output_dim, self.output_dim),
                                       name='{}_U_s'.format(self.name))
            self.b_s = K.zeros((self.output_dim,), name='{}_b_s'.format(self.name))

        self.trainable_weights += [self.U_a, self.U_m, self.U_s, self.b_a, self.b_m, self.b_s]

        if self.initial_weights is not None:
            self.set_weights(self.initial_weights)
            del self.initial_weights 
開發者ID:wentaozhu,項目名稱:recurrent-attention-for-QA-SQUAD-based-on-keras,代碼行數:32,代碼來源:layers.py

示例9: reset_states

# 需要導入模塊: from keras.engine import topology [as 別名]
# 或者: from keras.engine.topology import Layer [as 別名]
def reset_states(self):
        assert self.stateful, 'Layer must be stateful.'
        input_shape = self.input_spec[0].shape
        if not input_shape[0]:
            raise ValueError('If a RNN is stateful, a complete '
                             'input_shape must be provided '
                             '(including batch size).')
        if hasattr(self, 'states'):
            K.set_value(self.states[0],
                        np.zeros((input_shape[0], self.output_dim)))
        else:
            self.states = [K.zeros((input_shape[0], self.output_dim))] 
開發者ID:wentaozhu,項目名稱:recurrent-attention-for-QA-SQUAD-based-on-keras,代碼行數:14,代碼來源:layers.py

示例10: compute_output_shape

# 需要導入模塊: from keras.engine import topology [as 別名]
# 或者: from keras.engine.topology import Layer [as 別名]
def compute_output_shape(self, input_shape):
        return input_shape


#----------------------------------------------------------------------------
# Layer normalization.  Custom reimplementation based on the paper:
# https://arxiv.org/abs/1607.06450 
開發者ID:MSC-BUAA,項目名稱:Keras-progressive_growing_of_gans,代碼行數:9,代碼來源:layers.py


注:本文中的keras.engine.topology.Layer方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。