本文整理匯總了Python中keras.engine.topology.InputSpec方法的典型用法代碼示例。如果您正苦於以下問題:Python topology.InputSpec方法的具體用法?Python topology.InputSpec怎麽用?Python topology.InputSpec使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類keras.engine.topology
的用法示例。
在下文中一共展示了topology.InputSpec方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: from keras.engine import topology [as 別名]
# 或者: from keras.engine.topology import InputSpec [as 別名]
def __init__(self, feature_num,
feature_size,
embedding_size,
output_dim=1,
activation=None,
**kwargs):
if 'input_shape' not in kwargs and 'input_dim' in kwargs:
kwargs['input_shape'] = (kwargs.pop('input_dim'),)
super(FMLayer, self).__init__(**kwargs)
self.output_dim = output_dim
self.embedding_size = embedding_size
self.activation = activations.get(activation)
self.input_spec = InputSpec(ndim=2)
self.feature_num = feature_num
self.feature_size = feature_size
示例2: __init__
# 需要導入模塊: from keras.engine import topology [as 別名]
# 或者: from keras.engine.topology import InputSpec [as 別名]
def __init__(self, size=(1, 1), target_size=None, data_format='default', **kwargs):
"""Init.
size: factor to original shape (ie. original-> size * original).
target size: target size (ie. original->target).
"""
if data_format == 'default':
data_format = K.image_data_format()
self.size = tuple(size)
if target_size is not None:
self.target_size = tuple(target_size)
else:
self.target_size = None
assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {tf, th}'
self.data_format = data_format
self.input_spec = [InputSpec(ndim=4)]
super(BilinearUpSampling2D, self).__init__(**kwargs)
示例3: build
# 需要導入模塊: from keras.engine import topology [as 別名]
# 或者: from keras.engine.topology import InputSpec [as 別名]
def build(self, input_shape):
if len(input_shape) < 4:
raise ValueError('Inputs to `SeparableConv2D` should have rank 4. '
'Received input shape:', str(input_shape))
if self.data_format == 'channels_first':
channel_axis = 1
else:
channel_axis = 3
if input_shape[channel_axis] is None:
raise ValueError('The channel dimension of the inputs to '
'`SeparableConv2D` '
'should be defined. Found `None`.')
input_dim = int(input_shape[channel_axis])
depthwise_kernel_shape = (self.kernel_size[0],
self.kernel_size[1],
input_dim,
self.depth_multiplier)
self.depthwise_kernel = self.add_weight(
shape=depthwise_kernel_shape,
initializer=self.depthwise_initializer,
name='depthwise_kernel',
regularizer=self.depthwise_regularizer,
constraint=self.depthwise_constraint)
if self.use_bias:
self.bias = self.add_weight(shape=(self.filters,),
initializer=self.bias_initializer,
name='bias',
regularizer=self.bias_regularizer,
constraint=self.bias_constraint)
else:
self.bias = None
# Set input spec.
self.input_spec = InputSpec(ndim=4, axes={channel_axis: input_dim})
self.built = True
示例4: build
# 需要導入模塊: from keras.engine import topology [as 別名]
# 或者: from keras.engine.topology import InputSpec [as 別名]
def build(self, input_shape):
assert len(input_shape) == 2
input_dim = input_shape[1]
numeric_size = input_dim - self.feature_num
self.numeric_size = numeric_size
all_size = numeric_size + self.feature_size
self.input_spec = InputSpec(dtype=K.floatx(), shape=(None, input_dim))
self.w_one_hot = self.add_weight(name='one_one_hot',
shape=(self.feature_size, self.output_dim),
initializer='glorot_uniform',
trainable=True)
self.w_numeric = self.add_weight(name='one_numeric',
shape=(numeric_size, self.output_dim),
initializer='glorot_uniform',
trainable=True)
self.v_one_hot = self.add_weight(name='two_one_hot',
shape=(self.feature_size, self.embedding_size),
initializer='glorot_uniform',
trainable=True)
self.v_numeric = self.add_weight(name='two_numeric',
shape=(numeric_size, self.embedding_size),
initializer='glorot_uniform',
trainable=True)
self.b = self.add_weight(name='bias',
shape=(self.output_dim,),
initializer='zeros',
trainable=True)
super(FMLayer, self).build(input_shape)
示例5: __init__
# 需要導入模塊: from keras.engine import topology [as 別名]
# 或者: from keras.engine.topology import InputSpec [as 別名]
def __init__(self, axis=0,
kernel_initializer='zeros',
kernel_constraint=None,
kernel_regularizer=None,
**kwargs):
'''
Parameters
----------
axis : int
Axis along which to perform the pooling. By default 0 (should be time).
kernel_initializer: Initializer for the weights matrix
kernel_regularizer: Regularizer function applied to the weights matrix
kernel_constraint: Constraint function applied to the weights matrix
kwargs
'''
if 'input_shape' not in kwargs and 'input_dim' in kwargs:
kwargs['input_shape'] = (kwargs.pop('input_dim'), )
super(AutoPool1D, self).__init__(**kwargs)
self.axis = axis
self.kernel_initializer = initializers.get(kernel_initializer)
self.kernel_constraint = constraints.get(kernel_constraint)
self.kernel_regularizer = regularizers.get(kernel_regularizer)
self.input_spec = InputSpec(min_ndim=3)
self.supports_masking = True
示例6: build
# 需要導入模塊: from keras.engine import topology [as 別名]
# 或者: from keras.engine.topology import InputSpec [as 別名]
def build(self, input_shape):
assert len(input_shape) >= 3
input_dim = input_shape[-1]
self.kernel = self.add_weight(shape=(1, input_dim),
initializer=self.kernel_initializer,
name='kernel',
regularizer=self.kernel_regularizer,
constraint=self.kernel_constraint)
self.input_spec = InputSpec(min_ndim=2, axes={-1: input_dim})
self.built = True
示例7: build
# 需要導入模塊: from keras.engine import topology [as 別名]
# 或者: from keras.engine.topology import InputSpec [as 別名]
def build(self, input_shape):
self.input_spec = [InputSpec(shape=input_shape)]
gamma = self.gamma_init * np.ones((input_shape[self.axis],))
self.gamma = K.variable(gamma, name='{}_gamma'.format(self.name))
self.trainable_weights = [self.gamma]
super(L2Normalization, self).build(input_shape)
示例8: build
# 需要導入模塊: from keras.engine import topology [as 別名]
# 或者: from keras.engine.topology import InputSpec [as 別名]
def build(self, input_shape):
self.input_spec = [InputSpec(shape=input_shape)]
super(DecodeDetectionsFast, self).build(input_shape)
示例9: build
# 需要導入模塊: from keras.engine import topology [as 別名]
# 或者: from keras.engine.topology import InputSpec [as 別名]
def build(self, input_shape):
self.input_spec = [InputSpec(shape=input_shape)]
super(DecodeDetections, self).build(input_shape)
示例10: build
# 需要導入模塊: from keras.engine import topology [as 別名]
# 或者: from keras.engine.topology import InputSpec [as 別名]
def build(self, input_shape):
self.input_spec = [InputSpec(shape=input_shape)]
super(AnchorBoxes, self).build(input_shape)
示例11: build
# 需要導入模塊: from keras.engine import topology [as 別名]
# 或者: from keras.engine.topology import InputSpec [as 別名]
def build(self, input_shape):
self.input_spec = [InputSpec(shape=input_shape)]
gamma = self.gamma_init * np.ones((input_shape[self.axis],))
self.gamma = K.variable(gamma, name="{}_gamma".format(self.name))
self.trainable_weights = [self.gamma]
super(L2Normalization, self).build(input_shape)
示例12: build
# 需要導入模塊: from keras.engine import topology [as 別名]
# 或者: from keras.engine.topology import InputSpec [as 別名]
def build(self, input_shape):
self.input_spec = [InputSpec(shape=input_shape)]
shape = (input_shape[self.axis],)
init_gamma = self.scale * np.ones(shape)
self.gamma = K.variable(init_gamma, name=self.name+'_gamma')
self.trainable_weights = [self.gamma]
示例13: build
# 需要導入模塊: from keras.engine import topology [as 別名]
# 或者: from keras.engine.topology import InputSpec [as 別名]
def build(self, input_shape):
bs, input_length, input_dim = input_shape
self.controller_input_dim, self.controller_output_dim = controller_input_output_shape(
input_dim, self.units, self.m_depth, self.n_slots, self.shift_range, self.read_heads,
self.write_heads)
# Now that we've calculated the shape of the controller, we have add it to the layer/model.
if self.controller is None:
self.controller = Dense(
name = "controller",
activation = 'linear',
bias_initializer = 'zeros',
units = self.controller_output_dim,
input_shape = (bs, input_length, self.controller_input_dim))
self.controller.build(input_shape=(self.batch_size, input_length, self.controller_input_dim))
self.controller_with_state = False
# This is a fixed shift matrix
self.C = _circulant(self.n_slots, self.shift_range)
self.trainable_weights = self.controller.trainable_weights
# We need to declare the number of states we want to carry around.
# In our case the dimension seems to be 6 (LSTM) or 5 (GRU) or 4 (FF),
# see self.get_initial_states, those respond to:
# [old_ntm_output] + [init_M, init_wr, init_ww] + [init_h] (LSMT and GRU) + [(init_c] (LSTM only))
# old_ntm_output does not make sense in our world, but is required by the definition of the step function we
# intend to use.
# WARNING: What self.state_spec does is only poorly understood,
# I only copied it from keras/recurrent.py.
self.states = [None, None, None, None]
self.state_spec = [InputSpec(shape=(None, self.output_dim)), # old_ntm_output
InputSpec(shape=(None, self.n_slots, self.m_depth)), # Memory
InputSpec(shape=(None, self.read_heads, self.n_slots)), # weights_read
InputSpec(shape=(None, self.write_heads, self.n_slots))] # weights_write
super(NeuralTuringMachine, self).build(input_shape)
示例14: __init__
# 需要導入模塊: from keras.engine import topology [as 別名]
# 或者: from keras.engine.topology import InputSpec [as 別名]
def __init__(self, n_clusters, weights=None, alpha=1.0, **kwargs):
if 'input_shape' not in kwargs and 'input_dim' in kwargs:
kwargs['input_shape'] = (kwargs.pop('input_dim'),)
super(ClusteringLayer, self).__init__(**kwargs)
self.n_clusters = n_clusters
self.alpha = alpha
self.initial_weights = weights
self.input_spec = InputSpec(ndim=2)
示例15: build
# 需要導入模塊: from keras.engine import topology [as 別名]
# 或者: from keras.engine.topology import InputSpec [as 別名]
def build(self, input_shape):
assert len(input_shape) == 2
input_dim = input_shape[1]
self.input_spec = InputSpec(dtype=K.floatx(), shape=(None, input_dim))
self.clusters = self.add_weight(shape=(self.n_clusters, input_dim), initializer='glorot_uniform', name='clusters')
if self.initial_weights is not None:
self.set_weights(self.initial_weights)
del self.initial_weights
self.built = True