當前位置: 首頁>>代碼示例>>Python>>正文


Python topology.Input方法代碼示例

本文整理匯總了Python中keras.engine.topology.Input方法的典型用法代碼示例。如果您正苦於以下問題:Python topology.Input方法的具體用法?Python topology.Input怎麽用?Python topology.Input使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.engine.topology的用法示例。


在下文中一共展示了topology.Input方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_trainable_argument

# 需要導入模塊: from keras.engine import topology [as 別名]
# 或者: from keras.engine.topology import Input [as 別名]
def test_trainable_argument():
    x = np.random.random((5, 3))
    y = np.random.random((5, 2))

    model = Sequential()
    model.add(Dense(2, input_dim=3, trainable=False))
    model.compile('rmsprop', 'mse')
    out = model.predict(x)
    model.train_on_batch(x, y)
    out_2 = model.predict(x)
    assert_allclose(out, out_2)

    # test with nesting
    inputs = Input(shape=(3,))
    outputs = model(inputs)
    model = Model(inputs, outputs)
    model.compile('rmsprop', 'mse')
    out = model.predict(x)
    model.train_on_batch(x, y)
    out_2 = model.predict(x)
    assert_allclose(out, out_2) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:23,代碼來源:test_training.py

示例2: test_specify_initial_state_keras_tensor

# 需要導入模塊: from keras.engine import topology [as 別名]
# 或者: from keras.engine.topology import Input [as 別名]
def test_specify_initial_state_keras_tensor(layer_class):
    num_states = 2 if layer_class is recurrent.LSTM else 1

    # Test with Keras tensor
    inputs = Input((timesteps, embedding_dim))
    initial_state = [Input((units,)) for _ in range(num_states)]
    layer = layer_class(units)
    if len(initial_state) == 1:
        output = layer(inputs, initial_state=initial_state[0])
    else:
        output = layer(inputs, initial_state=initial_state)
    assert initial_state[0] in layer._inbound_nodes[0].input_tensors

    model = Model([inputs] + initial_state, output)
    model.compile(loss='categorical_crossentropy', optimizer='adam')

    inputs = np.random.random((num_samples, timesteps, embedding_dim))
    initial_state = [np.random.random((num_samples, units))
                     for _ in range(num_states)]
    targets = np.random.random((num_samples, units))
    model.fit([inputs] + initial_state, targets) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:23,代碼來源:recurrent_test.py

示例3: test_specify_initial_state_non_keras_tensor

# 需要導入模塊: from keras.engine import topology [as 別名]
# 或者: from keras.engine.topology import Input [as 別名]
def test_specify_initial_state_non_keras_tensor(layer_class):
    num_states = 2 if layer_class is recurrent.LSTM else 1

    # Test with non-Keras tensor
    inputs = Input((timesteps, embedding_dim))
    initial_state = [K.random_normal_variable((num_samples, units), 0, 1)
                     for _ in range(num_states)]
    layer = layer_class(units)
    output = layer(inputs, initial_state=initial_state)

    model = Model(inputs, output)
    model.compile(loss='categorical_crossentropy', optimizer='adam')

    inputs = np.random.random((num_samples, timesteps, embedding_dim))
    targets = np.random.random((num_samples, units))
    model.fit(inputs, targets) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:18,代碼來源:recurrent_test.py

示例4: test_specify_state_with_masking

# 需要導入模塊: from keras.engine import topology [as 別名]
# 或者: from keras.engine.topology import Input [as 別名]
def test_specify_state_with_masking(layer_class):
    ''' This test based on a previously failing issue here:
    https://github.com/keras-team/keras/issues/1567
    '''
    num_states = 2 if layer_class is recurrent.LSTM else 1

    inputs = Input((timesteps, embedding_dim))
    _ = Masking()(inputs)
    initial_state = [Input((units,)) for _ in range(num_states)]
    output = layer_class(units)(inputs, initial_state=initial_state)

    model = Model([inputs] + initial_state, output)
    model.compile(loss='categorical_crossentropy', optimizer='adam')

    inputs = np.random.random((num_samples, timesteps, embedding_dim))
    initial_state = [np.random.random((num_samples, units))
                     for _ in range(num_states)]
    targets = np.random.random((num_samples, units))
    model.fit([inputs] + initial_state, targets) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:21,代碼來源:recurrent_test.py

示例5: test_stacked_rnn_attributes

# 需要導入模塊: from keras.engine import topology [as 別名]
# 或者: from keras.engine.topology import Input [as 別名]
def test_stacked_rnn_attributes():
    cells = [recurrent.LSTMCell(3),
             recurrent.LSTMCell(3, kernel_regularizer='l2')]
    layer = recurrent.RNN(cells)
    layer.build((None, None, 5))

    # Test regularization losses
    assert len(layer.losses) == 1

    # Test weights
    assert len(layer.trainable_weights) == 6
    cells[0].trainable = False
    assert len(layer.trainable_weights) == 3
    assert len(layer.non_trainable_weights) == 3

    # Test `get_losses_for`
    x = keras.Input((None, 5))
    y = K.sum(x)
    cells[0].add_loss(y, inputs=x)
    assert layer.get_losses_for(x) == [y] 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:22,代碼來源:recurrent_test.py

示例6: test_initial_states_as_other_inputs

# 需要導入模塊: from keras.engine import topology [as 別名]
# 或者: from keras.engine.topology import Input [as 別名]
def test_initial_states_as_other_inputs(layer_class):
    num_states = 2 if layer_class is recurrent.LSTM else 1

    # Test with Keras tensor
    main_inputs = Input((timesteps, embedding_dim))
    initial_state = [Input((units,)) for _ in range(num_states)]
    inputs = [main_inputs] + initial_state

    layer = layer_class(units)
    output = layer(inputs)
    assert initial_state[0] in layer._inbound_nodes[0].input_tensors

    model = Model(inputs, output)
    model.compile(loss='categorical_crossentropy', optimizer='adam')

    main_inputs = np.random.random((num_samples, timesteps, embedding_dim))
    initial_state = [np.random.random((num_samples, units))
                     for _ in range(num_states)]
    targets = np.random.random((num_samples, units))
    model.train_on_batch([main_inputs] + initial_state, targets) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:22,代碼來源:recurrent_test.py

示例7: create_model

# 需要導入模塊: from keras.engine import topology [as 別名]
# 或者: from keras.engine.topology import Input [as 別名]
def create_model(gpu):
    with tf.device(gpu):
        input = Input((1280, 1918, len(dirs)))
        x = Lambda(lambda x: K.mean(x, axis=-1, keepdims=True))(input)
        model = Model(input, x)
        model.summary()
    return model 
開發者ID:killthekitten,項目名稱:kaggle-carvana-2017,代碼行數:9,代碼來源:ensemble_gpu.py

示例8: get_simple_unet

# 需要導入模塊: from keras.engine import topology [as 別名]
# 或者: from keras.engine.topology import Input [as 別名]
def get_simple_unet(input_shape):
    img_input = Input(input_shape)
    conv1 = conv_block_simple(img_input, 32, "conv1_1")
    conv1 = conv_block_simple(conv1, 32, "conv1_2")
    pool1 = MaxPooling2D((2, 2), strides=(2, 2), padding="same", name="pool1")(conv1)

    conv2 = conv_block_simple(pool1, 64, "conv2_1")
    conv2 = conv_block_simple(conv2, 64, "conv2_2")
    pool2 = MaxPooling2D((2, 2), strides=(2, 2), padding="same", name="pool2")(conv2)

    conv3 = conv_block_simple(pool2, 128, "conv3_1")
    conv3 = conv_block_simple(conv3, 128, "conv3_2")
    pool3 = MaxPooling2D((2, 2), strides=(2, 2), padding="same", name="pool3")(conv3)

    conv4 = conv_block_simple(pool3, 256, "conv4_1")
    conv4 = conv_block_simple(conv4, 256, "conv4_2")
    conv4 = conv_block_simple(conv4, 256, "conv4_3")

    up5 = concatenate([UpSampling2D()(conv4), conv3], axis=-1)
    conv5 = conv_block_simple(up5, 128, "conv5_1")
    conv5 = conv_block_simple(conv5, 128, "conv5_2")

    up6 = concatenate([UpSampling2D()(conv5), conv2], axis=-1)
    conv6 = conv_block_simple(up6, 64, "conv6_1")
    conv6 = conv_block_simple(conv6, 64, "conv6_2")

    up7 = concatenate([UpSampling2D()(conv6), conv1], axis=-1)
    conv7 = conv_block_simple(up7, 32, "conv7_1")
    conv7 = conv_block_simple(conv7, 32, "conv7_2")

    conv7 = SpatialDropout2D(0.2)(conv7)

    prediction = Conv2D(1, (1, 1), activation="sigmoid", name="prediction")(conv7)
    model = Model(img_input, prediction)
    return model 
開發者ID:killthekitten,項目名稱:kaggle-carvana-2017,代碼行數:37,代碼來源:models.py

示例9: build_model

# 需要導入模塊: from keras.engine import topology [as 別名]
# 或者: from keras.engine.topology import Input [as 別名]
def build_model(args):
    cnn_filter_num = args['cnn_filter_num']
    cnn_filter_size = args['cnn_filter_size']
    l2_reg = args['l2_reg']

    in_x = x = Input(args['input_dim'])

    # (batch, channels, height, width)
    x = Conv2D(filters=cnn_filter_num, kernel_size=cnn_filter_size, padding="same",
                data_format="channels_first", kernel_regularizer=l2(l2_reg))(x)
    x = BatchNormalization(axis=1)(x)
    x = Activation("relu")(x)

    for _ in range(args['res_layer_num']):
        x = _build_residual_block(args, x)

    res_out = x
    
    # for policy output
    x = Conv2D(filters=2, kernel_size=1, data_format="channels_first", kernel_regularizer=l2(l2_reg))(res_out)
    x = BatchNormalization(axis=1)(x)
    x = Activation("relu")(x)
    x = Flatten()(x)
    policy_out = Dense(args['policy_dim'], kernel_regularizer=l2(l2_reg), activation="softmax", name="policy")(x)
    
    # for value output
    x = Conv2D(filters=1, kernel_size=1, data_format="channels_first", kernel_regularizer=l2(l2_reg))(res_out)
    x = BatchNormalization(axis=1)(x)
    x = Activation("relu")(x)
    x = Flatten()(x)
    x = Dense(256, kernel_regularizer=l2(l2_reg), activation="relu")(x)
    value_out = Dense(1, kernel_regularizer=l2(l2_reg), activation="tanh", name="value")(x)
    
    return Model(in_x, [policy_out, value_out], name="model") 
開發者ID:witchu,項目名稱:alphazero,代碼行數:36,代碼來源:keras_model.py

示例10: build

# 需要導入模塊: from keras.engine import topology [as 別名]
# 或者: from keras.engine.topology import Input [as 別名]
def build(self):
        mc = self.config.model
        in_x = x = Input((2, 6, 7))  # [own(8x8), enemy(8x8)]

        # (batch, channels, height, width)
        x = Conv2D(filters=mc.cnn_filter_num, kernel_size=mc.cnn_filter_size, padding="same",
                   data_format="channels_first", kernel_regularizer=l2(mc.l2_reg))(x)
        x = BatchNormalization(axis=1)(x)
        x = Activation("relu")(x)

        for _ in range(mc.res_layer_num):
            x = self._build_residual_block(x)

        res_out = x
        # for policy output
        x = Conv2D(filters=2, kernel_size=1, data_format="channels_first", kernel_regularizer=l2(mc.l2_reg))(res_out)
        x = BatchNormalization(axis=1)(x)
        x = Activation("relu")(x)
        x = Flatten()(x)
        # no output for 'pass'
        policy_out = Dense(self.config.n_labels, kernel_regularizer=l2(mc.l2_reg), activation="softmax", name="policy_out")(x)

        # for value output
        x = Conv2D(filters=1, kernel_size=1, data_format="channels_first", kernel_regularizer=l2(mc.l2_reg))(res_out)
        x = BatchNormalization(axis=1)(x)
        x = Activation("relu")(x)
        x = Flatten()(x)
        x = Dense(mc.value_fc_size, kernel_regularizer=l2(mc.l2_reg), activation="relu")(x)
        value_out = Dense(1, kernel_regularizer=l2(mc.l2_reg), activation="tanh", name="value_out")(x)

        self.model = Model(in_x, [policy_out, value_out], name="connect4_model") 
開發者ID:Zeta36,項目名稱:connect4-alpha-zero,代碼行數:33,代碼來源:model_connect4.py

示例11: test_weighted_masked_objective

# 需要導入模塊: from keras.engine import topology [as 別名]
# 或者: from keras.engine.topology import Input [as 別名]
def test_weighted_masked_objective():
    a = Input(shape=(3,), name='input_a')

    # weighted_masked_objective
    def mask_dummy(y_true=None, y_pred=None, weight=None):
        return K.placeholder(y_true.shape)

    weighted_function = _weighted_masked_objective(losses.categorical_crossentropy)
    weighted_function(a, a, None) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:11,代碼來源:test_training.py

示例12: test_warnings

# 需要導入模塊: from keras.engine import topology [as 別名]
# 或者: from keras.engine.topology import Input [as 別名]
def test_warnings():
    a = Input(shape=(3,), name='input_a')
    b = Input(shape=(3,), name='input_b')

    a_2 = Dense(4, name='dense_1')(a)
    dp = Dropout(0.5, name='dropout')
    b_2 = dp(b)

    model = Model([a, b], [a_2, b_2])

    optimizer = 'rmsprop'
    loss = 'mse'
    loss_weights = [1., 0.5]
    model.compile(optimizer, loss, metrics=[], loss_weights=loss_weights,
                  sample_weight_mode=None)

    def gen_data(batch_sz):
        while True:
            yield ([np.random.random((batch_sz, 3)), np.random.random((batch_sz, 3))],
                   [np.random.random((batch_sz, 4)), np.random.random((batch_sz, 3))])

    with pytest.warns(Warning) as w:
        out = model.fit_generator(gen_data(4), steps_per_epoch=10, use_multiprocessing=True, workers=2)
    warning_raised = any(['Sequence' in str(w_.message) for w_ in w])
    assert warning_raised, 'No warning raised when using generator with processes.'

    with pytest.warns(None) as w:
        out = model.fit_generator(RandomSequence(3), steps_per_epoch=4, use_multiprocessing=True, workers=2)
    assert all(['Sequence' not in str(w_.message) for w_ in w]), 'A warning was raised for Sequence.' 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:31,代碼來源:test_training.py

示例13: test_sparse_inputs_targets

# 需要導入模塊: from keras.engine import topology [as 別名]
# 或者: from keras.engine.topology import Input [as 別名]
def test_sparse_inputs_targets():
    test_inputs = [sparse.random(6, 3, density=0.25).tocsr() for _ in range(2)]
    test_outputs = [sparse.random(6, i, density=0.25).tocsr() for i in range(3, 5)]
    in1 = Input(shape=(3,))
    in2 = Input(shape=(3,))
    out1 = Dropout(0.5, name='dropout')(in1)
    out2 = Dense(4, name='dense_1')(in2)
    model = Model([in1, in2], [out1, out2])
    model.predict(test_inputs, batch_size=2)
    model.compile('rmsprop', 'mse')
    model.fit(test_inputs, test_outputs, epochs=1, batch_size=2, validation_split=0.5)
    model.evaluate(test_inputs, test_outputs, batch_size=2) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:14,代碼來源:test_training.py

示例14: test_sparse_placeholder_fit

# 需要導入模塊: from keras.engine import topology [as 別名]
# 或者: from keras.engine.topology import Input [as 別名]
def test_sparse_placeholder_fit():
    test_inputs = [sparse.random(6, 3, density=0.25).tocsr() for _ in range(2)]
    test_outputs = [sparse.random(6, i, density=0.25).tocsr() for i in range(3, 5)]
    in1 = Input(shape=(3,))
    in2 = Input(shape=(3,), sparse=True)
    out1 = Dropout(0.5, name='dropout')(in1)
    out2 = Dense(4, name='dense_1')(in2)
    model = Model([in1, in2], [out1, out2])
    model.predict(test_inputs, batch_size=2)
    model.compile('rmsprop', 'mse')
    model.fit(test_inputs, test_outputs, epochs=1, batch_size=2, validation_split=0.5)
    model.evaluate(test_inputs, test_outputs, batch_size=2) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:14,代碼來源:test_training.py

示例15: test_trainable_weights_count_consistency

# 需要導入模塊: from keras.engine import topology [as 別名]
# 或者: from keras.engine.topology import Input [as 別名]
def test_trainable_weights_count_consistency():
    """Tests the trainable weights consistency check of Model.

    This verifies that a warning is shown if model.trainable is modified
    and the model is summarized/run without a new call to .compile()

    Reproduce issue #8121
    """
    a = Input(shape=(3,), name='input_a')
    model1 = Model(inputs=a, outputs=Dense(1)(a))

    model1.trainable = False
    b = Input(shape=(3,), name='input_b')
    y = model1(b)
    model2 = Model(inputs=b, outputs=Dense(1)(y))

    model2.compile(optimizer='adam', loss='mse')

    model1.trainable = True

    # Should warn on .summary()
    with pytest.warns(UserWarning) as w:
        model2.summary()
    warning_raised = any(['Discrepancy' in str(w_.message) for w_ in w])
    assert warning_raised, 'No warning raised when trainable is modified without .compile.'

    # And on .fit()
    with pytest.warns(UserWarning) as w:
        model2.fit(x=np.zeros((5, 3)), y=np.zeros((5, 1)))
    warning_raised = any(['Discrepancy' in str(w_.message) for w_ in w])
    assert warning_raised, 'No warning raised when trainable is modified without .compile.'

    # And shouldn't warn if we recompile
    model2.compile(optimizer='adam', loss='mse')
    with pytest.warns(None) as w:
        model2.summary()
    assert len(w) == 0, "Warning raised even when .compile() is called after modifying .trainable" 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:39,代碼來源:test_training.py


注:本文中的keras.engine.topology.Input方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。