當前位置: 首頁>>代碼示例>>Python>>正文


Python saving.load_weights_from_hdf5_group_by_name方法代碼示例

本文整理匯總了Python中keras.engine.saving.load_weights_from_hdf5_group_by_name方法的典型用法代碼示例。如果您正苦於以下問題:Python saving.load_weights_from_hdf5_group_by_name方法的具體用法?Python saving.load_weights_from_hdf5_group_by_name怎麽用?Python saving.load_weights_from_hdf5_group_by_name使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.engine.saving的用法示例。


在下文中一共展示了saving.load_weights_from_hdf5_group_by_name方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: load_weights

# 需要導入模塊: from keras.engine import saving [as 別名]
# 或者: from keras.engine.saving import load_weights_from_hdf5_group_by_name [as 別名]
def load_weights(self, filepath, by_name=False, exclude=None):
        """Modified version of the correspoding Keras function with
        the addition of multi-GPU support and the ability to exclude
        some layers from loading.
        exlude: list of layer names to excluce
        """
        import h5py
        from keras.engine import saving

        if exclude:
            by_name = True

        if h5py is None:
            raise ImportError('`load_weights` requires h5py.')
        f = h5py.File(filepath, mode='r')
        if 'layer_names' not in f.attrs and 'model_weights' in f:
            f = f['model_weights']

        # In multi-GPU training, we wrap the model. Get layers
        # of the inner model because they have the weights.
        keras_model = self.keras_model
        layers = keras_model.inner_model.layers if hasattr(keras_model, "inner_model")\
            else keras_model.layers

        # Exclude some layers
        if exclude:
            layers = filter(lambda l: l.name not in exclude, layers)

        if by_name:
            saving.load_weights_from_hdf5_group_by_name(f, layers)
        else:
            saving.load_weights_from_hdf5_group(f, layers)
        if hasattr(f, 'close'):
            f.close()

        # Update the log directory
        self.set_log_dir(filepath) 
開發者ID:Ekim-Yurtsever,項目名稱:DeepTL-Lane-Change-Classification,代碼行數:39,代碼來源:model.py

示例2: load_weights

# 需要導入模塊: from keras.engine import saving [as 別名]
# 或者: from keras.engine.saving import load_weights_from_hdf5_group_by_name [as 別名]
def load_weights(self, model_path, by_name=True, exclude=None):
        '''Modified version of the corresponding Keras function with
        the addition of multi-GPU support and the ability to exclude
        some layers from loading.
        exclude: list of layer names to exclude
        '''
        import h5py
        from keras.engine import saving

        if exclude:
            by_name = True

        if h5py is None:
            raise ImportError('`load_weights` requires h5py.')
        f = h5py.File(model_path, mode='r')
        if 'layer_names' not in f.attrs and 'model_weights' in f:
            f = f['model_weights']

        # In multi-GPU training, we wrap the model. Get layers
        # of the inner model because they have the weights.
        layers = self.model.inner_model.layers if hasattr(self.model, 'inner_model') \
            else self.model.layers

        # Exclude some layers
        if exclude:
            layers = filter(lambda l: l.name not in exclude, layers)

        if by_name:
            saving.load_weights_from_hdf5_group_by_name(f, layers)
        else:
            saving.load_weights_from_hdf5_group(f, layers)
        if hasattr(f, 'close'):
            f.close() 
開發者ID:nearthlab,項目名稱:image-segmentation,代碼行數:35,代碼來源:keras_model_wrapper.py

示例3: load_weights

# 需要導入模塊: from keras.engine import saving [as 別名]
# 或者: from keras.engine.saving import load_weights_from_hdf5_group_by_name [as 別名]
def load_weights(self, filepath, by_name=False, exclude=None):
        """Modified version of the corresponding Keras function with
        the addition of multi-GPU support and the ability to exclude
        some layers from loading.
        exclude: list of layer names to exclude
        """
        import h5py
        # Conditional import to support versions of Keras before 2.2
        # TODO: remove in about 6 months (end of 2018)
        try:
            from keras.engine import saving
        except ImportError:
            # Keras before 2.2 used the 'topology' namespace.
            from keras.engine import topology as saving

        if exclude:
            by_name = True

        if h5py is None:
            raise ImportError('`load_weights` requires h5py.')
        f = h5py.File(filepath, mode='r')
        if 'layer_names' not in f.attrs and 'model_weights' in f:
            f = f['model_weights']

        # In multi-GPU training, we wrap the model. Get layers
        # of the inner model because they have the weights.
        keras_model = self.keras_model
        layers = keras_model.inner_model.layers if hasattr(keras_model, "inner_model")\
            else keras_model.layers

        # Exclude some layers
        if exclude:
            layers = filter(lambda l: l.name not in exclude, layers)

        if by_name:
            saving.load_weights_from_hdf5_group_by_name(f, layers)
        else:
            saving.load_weights_from_hdf5_group(f, layers)
        if hasattr(f, 'close'):
            f.close()

        # Update the log directory
        self.set_log_dir(filepath) 
開發者ID:dataiku,項目名稱:dataiku-contrib,代碼行數:45,代碼來源:model.py

示例4: load_weights

# 需要導入模塊: from keras.engine import saving [as 別名]
# 或者: from keras.engine.saving import load_weights_from_hdf5_group_by_name [as 別名]
def load_weights(self, filepath, by_name=False, exclude=None):
        """Modified version of the corresponding Keras function with
        the addition of multi-GPU support and the ability to exclude
        some layers from loading.
        exclude: list of layer names to exclude
        """
        import h5py
        # Conditional import to support versions of Keras before 2.2
        # TODO: remove in about 6 months (end of 2018)
        try:
            from keras.engine import saving
        except ImportError:
            # Keras before 2.2 used the 'topology' namespace.
            from keras.engine import topology as saving

        if exclude:
            by_name = True

        if h5py is None:
            raise ImportError('`load_weights` requires h5py.')
        f = h5py.File(filepath, mode='r')
        if 'layer_names' not in f.attrs and 'model_weights' in f:
            f = f['model_weights']

        # In multi-GPU training, we wrap the model. Get layers
        # of the inner model because they have the weights.
        keras_model = self.keras_model
        layers = keras_model.inner_model.layers if hasattr(keras_model, "inner_model")\
            else keras_model.layers

        # Exclude some layers
        if exclude:
            layers = filter(lambda l: l.name not in exclude, layers)

        if by_name:
            saving.load_weights_from_hdf5_group_by_name(f, layers)
        else:
            saving.load_weights_from_hdf5_group(f, layers)
        if hasattr(f, 'close'):
            f.close()

        # Update the log directory
        if self.mode == 'training':
            self.set_log_dir(filepath) 
開發者ID:Esri,項目名稱:raster-deep-learning,代碼行數:46,代碼來源:model.py

示例5: load_weights

# 需要導入模塊: from keras.engine import saving [as 別名]
# 或者: from keras.engine.saving import load_weights_from_hdf5_group_by_name [as 別名]
def load_weights(self, filepath, by_name=False, exclude=None):
        """Modified version of the correspoding Keras function with
        the addition of multi-GPU support and the ability to exclude
        some layers from loading.
        exlude: list of layer names to excluce
        """
        import h5py
        # Keras 2.2 use saving
        try:
            from keras.engine import saving
        except ImportError:
            # Keras before 2.2 used the 'topology' namespace.
            from keras.engine import topology as saving

        if exclude:
            by_name = True

        if h5py is None:
            raise ImportError('`load_weights` requires h5py.')
        f = h5py.File(filepath, mode='r')
        if 'layer_names' not in f.attrs and 'model_weights' in f:
            f = f['model_weights']

        # In multi-GPU training, we wrap the model. Get layers
        # of the inner model because they have the weights.
        keras_model = self.keras_model
        layers = keras_model.inner_model.layers if hasattr(keras_model, "inner_model")\
            else keras_model.layers

        # Exclude some layers
        if exclude:
            layers = filter(lambda l: l.name not in exclude, layers)

        if by_name:
            saving.load_weights_from_hdf5_group_by_name(f, layers)
        else:
            saving.load_weights_from_hdf5_group(f, layers)
        if hasattr(f, 'close'):
            f.close()

        # Update the log directory
        self.set_log_dir(filepath) 
開發者ID:parap1uie-s,項目名稱:Keras-RFCN,代碼行數:44,代碼來源:BaseModel.py


注:本文中的keras.engine.saving.load_weights_from_hdf5_group_by_name方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。