當前位置: 首頁>>代碼示例>>Python>>正文


Python keras.datasets方法代碼示例

本文整理匯總了Python中keras.datasets方法的典型用法代碼示例。如果您正苦於以下問題:Python keras.datasets方法的具體用法?Python keras.datasets怎麽用?Python keras.datasets使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras的用法示例。


在下文中一共展示了keras.datasets方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_ShapLinearExplainer

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import datasets [as 別名]
def test_ShapLinearExplainer(self):
        corpus, y = shap.datasets.imdb()
        corpus_train, corpus_test, y_train, y_test = train_test_split(corpus, y, test_size=0.2, random_state=7)

        vectorizer = TfidfVectorizer(min_df=10)
        X_train = vectorizer.fit_transform(corpus_train)
        X_test = vectorizer.transform(corpus_test)

        model = sklearn.linear_model.LogisticRegression(penalty="l1", C=0.1, solver='liblinear')
        model.fit(X_train, y_train)

        shapexplainer = LinearExplainer(model, X_train, feature_dependence="independent")
        shap_values = shapexplainer.explain_instance(X_test)
        print("Invoked Shap LinearExplainer")

    # comment this test as travis runs out of resources 
開發者ID:IBM,項目名稱:AIX360,代碼行數:18,代碼來源:test_shap.py

示例2: test_ShapGradientExplainer

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import datasets [as 別名]
def test_ShapGradientExplainer(self):

    #     model = VGG16(weights='imagenet', include_top=True)
    #     X, y = shap.datasets.imagenet50()
    #     to_explain = X[[39, 41]]
    #
    #     url = "https://s3.amazonaws.com/deep-learning-models/image-models/imagenet_class_index.json"
    #     fname = shap.datasets.cache(url)
    #     with open(fname) as f:
    #         class_names = json.load(f)
    #
    #     def map2layer(x, layer):
    #         feed_dict = dict(zip([model.layers[0].input], [preprocess_input(x.copy())]))
    #         return K.get_session().run(model.layers[layer].input, feed_dict)
    #
    #     e = GradientExplainer((model.layers[7].input, model.layers[-1].output),
    #                           map2layer(preprocess_input(X.copy()), 7))
    #     shap_values, indexes = e.explain_instance(map2layer(to_explain, 7), ranked_outputs=2)
    #
          print("Skipped Shap GradientExplainer") 
開發者ID:IBM,項目名稱:AIX360,代碼行數:22,代碼來源:test_shap.py

示例3: get_dataset

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import datasets [as 別名]
def get_dataset():
    """
    Return processed and reshaped dataset for training
    In this cases Fashion-mnist dataset.
    """
    # load mnist dataset
    (x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()
    
    # test and train datasets
    print("Nb Train:", x_train.shape[0], "Nb test:",x_test.shape[0])
    x_train = x_train.reshape(x_train.shape[0], img_h, img_w, 1)
    x_test = x_test.reshape(x_test.shape[0], img_h, img_w, 1)
    in_shape = (img_h, img_w, 1)

    # normalize inputs
    x_train = x_train.astype('float32')
    x_test = x_test.astype('float32')
    x_train /= 255.0
    x_test /= 255.0

    # convert to one hot vectors 
    y_train = keras.utils.to_categorical(y_train, nb_class)
    y_test = keras.utils.to_categorical(y_test, nb_class)
    return x_train, x_test, y_train, y_test 
開發者ID:PacktPublishing,項目名稱:Practical-Computer-Vision,代碼行數:26,代碼來源:05_nn_mnist.py

示例4: build_data

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import datasets [as 別名]
def build_data(self):
        """Returns the train and test datasets and their labels"""

        # load original mnist dataset and expand each number with embedded "0"s
        (x_train, y_train), (x_test, y_test) = mnist.load_data()
        embedding_img = x_train[1]
        x_train = np.array([self.expand_img(embedding_img, img) for img, label in zip(x_train, y_train)])
        x_test = np.array([self.expand_img(embedding_img, img) for img, label in zip(x_test, y_test)])

        if K.image_data_format() == 'channels_first':
            x_train = x_train.reshape(x_train.shape[0], 1, self.img_rows, self.img_cols)
            x_test = x_test.reshape(x_test.shape[0], 1, self.img_rows, self.img_cols)
        else:
            x_train = x_train.reshape(x_train.shape[0], self.img_rows, self.img_cols, 1)
            x_test = x_test.reshape(x_test.shape[0], self.img_rows, self.img_cols, 1)

        # normalize and cast
        x_train = x_train.astype('float32')
        x_test = x_test.astype('float32')
        x_train /= 255
        x_test /= 255

        # convert class vectors to binary class matrices
        y_train = keras.utils.to_categorical(y_train, self.num_classes)
        y_test = keras.utils.to_categorical(y_test, self.num_classes)

        return x_train, x_test, y_train, y_test 
開發者ID:dancsalo,項目名稱:TensorFlow-MIL,代碼行數:29,代碼來源:datasets.py

示例5: data_cifar10

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import datasets [as 別名]
def data_cifar10(train_start=0, train_end=50000, test_start=0, test_end=10000):
    """
    Preprocess CIFAR10 dataset
    :return:
    """

    global keras
    if keras is None:
        import keras
        from keras.datasets import cifar10
        from keras.utils import np_utils

    # These values are specific to CIFAR10
    img_rows = 32
    img_cols = 32
    nb_classes = 10

    # the data, shuffled and split between train and test sets
    (x_train, y_train), (x_test, y_test) = cifar10.load_data()

    if keras.backend.image_dim_ordering() == 'th':
        x_train = x_train.reshape(x_train.shape[0], 3, img_rows, img_cols)
        x_test = x_test.reshape(x_test.shape[0], 3, img_rows, img_cols)
    else:
        x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 3)
        x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 3)
    x_train = x_train.astype('float32')
    x_test = x_test.astype('float32')
    x_train /= 255
    x_test /= 255
    print('x_train shape:', x_train.shape)
    print(x_train.shape[0], 'train samples')
    print(x_test.shape[0], 'test samples')

    # convert class vectors to binary class matrices
    y_train = np_utils.to_categorical(y_train, nb_classes)
    y_test = np_utils.to_categorical(y_test, nb_classes)

    x_train = x_train[train_start:train_end, :, :, :]
    y_train = y_train[train_start:train_end, :]
    x_test = x_test[test_start:test_end, :]
    y_test = y_test[test_start:test_end, :]

    return x_train, y_train, x_test, y_test 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:46,代碼來源:dataset.py

示例6: test_Shap

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import datasets [as 別名]
def test_Shap(self):

        np.random.seed(1)
        X_train, X_test, Y_train, Y_test = train_test_split(*shap.datasets.iris(), test_size=0.2, random_state=0)

        # K-nearest neighbors
        knn = sklearn.neighbors.KNeighborsClassifier()
        knn.fit(X_train, Y_train)
        v = 100*np.sum(knn.predict(X_test) == Y_test)/len(Y_test)
        print("Accuracy = {0}%".format(v))

        # Explain a single prediction from the test set
        shapexplainer = KernelExplainer(knn.predict_proba, X_train)
        shap_values = shapexplainer.explain_instance(X_test.iloc[0,:])  # TODO test against original SHAP Lib
        print('knn X_test iloc_0')
        print(shap_values)
        print(shapexplainer.explainer.expected_value[0])
        print(shap_values[0])

        # Explain all the predictions in the test set
        shap_values = shapexplainer.explain_instance(X_test)
        print('knn X_test')
        print(shap_values)
        print(shapexplainer.explainer.expected_value[0])
        print(shap_values[0])

        # SV machine with a linear kernel
        svc_linear = sklearn.svm.SVC(kernel='linear', probability=True)
        svc_linear.fit(X_train, Y_train)
        v = 100*np.sum(svc_linear.predict(X_test) == Y_test)/len(Y_test)
        print("Accuracy = {0}%".format(v))

        # Explain all the predictions in the test set
        shapexplainer = KernelExplainer(svc_linear.predict_proba, X_train)
        shap_values = shapexplainer.explain_instance(X_test)
        print('svc X_test')
        print(shap_values)
        print(shapexplainer.explainer.expected_value[0])
        print(shap_values[0])

        np.random.seed(1)
        X,y = shap.datasets.adult()
        X_train, X_valid, y_train, y_valid = sklearn.model_selection.train_test_split(X, y, test_size=0.2, random_state=7)

        knn = sklearn.neighbors.KNeighborsClassifier()
        knn.fit(X_train, y_train)

        f = lambda x: knn.predict_proba(x)[:,1]
        med = X_train.median().values.reshape((1,X_train.shape[1]))
        shapexplainer = KernelExplainer(f, med)
        shap_values_single = shapexplainer.explain_instance(X.iloc[0,:], nsamples=1000)
        print('Shap Tabular Example')
        print(shapexplainer.explainer.expected_value)
        print(shap_values_single)
        print("Invoked Shap KernelExplainer") 
開發者ID:IBM,項目名稱:AIX360,代碼行數:57,代碼來源:test_shap.py

示例7: test_ShapTreeExplainer

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import datasets [as 別名]
def test_ShapTreeExplainer(self):
        X, y = shap.datasets.nhanesi()
        X_display, y_display = shap.datasets.nhanesi(display=True)  # human readable feature values

        xgb_full = xgboost.DMatrix(X, label=y)

        # create a train/test split
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=7)
        xgb_train = xgboost.DMatrix(X_train, label=y_train)
        xgb_test = xgboost.DMatrix(X_test, label=y_test)

        # use validation set to choose # of trees
        params = {
            "eta": 0.002,
            "max_depth": 3,
            "objective": "survival:cox",
            "subsample": 0.5
        }
        model_train = xgboost.train(params, xgb_train, 10000, evals=[(xgb_test, "test")], verbose_eval=1000)

        # train final model on the full data set
        params = {
            "eta": 0.002,
            "max_depth": 3,
            "objective": "survival:cox",
            "subsample": 0.5
        }
        model = xgboost.train(params, xgb_full, 5000, evals=[(xgb_full, "test")], verbose_eval=1000)

        def c_statistic_harrell(pred, labels):
            total = 0
            matches = 0
            for i in range(len(labels)):
                for j in range(len(labels)):
                    if labels[j] > 0 and abs(labels[i]) > labels[j]:
                        total += 1
                        if pred[j] > pred[i]:
                            matches += 1
            return matches / total

        # see how well we can order people by survival
        c_statistic_harrell(model_train.predict(xgb_test, ntree_limit=5000), y_test)

        shap_values = TreeExplainer(model).explain_instance(X)
        print("Invoked Shap TreeExplainer") 
開發者ID:IBM,項目名稱:AIX360,代碼行數:47,代碼來源:test_shap.py

示例8: data_mnist

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import datasets [as 別名]
def data_mnist(datadir='/tmp/', train_start=0, train_end=60000, test_start=0,
               test_end=10000):
    """
    Load and preprocess MNIST dataset
    :param datadir: path to folder where data should be stored
    :param train_start: index of first training set example
    :param train_end: index of last training set example
    :param test_start: index of first test set example
    :param test_end: index of last test set example
    :return: tuple of four arrays containing training data, training labels,
             testing data and testing labels.
    """
    assert isinstance(train_start, int)
    assert isinstance(train_end, int)
    assert isinstance(test_start, int)
    assert isinstance(test_end, int)

    if 'tensorflow' in sys.modules:
        from tensorflow.examples.tutorials.mnist import input_data
        mnist = input_data.read_data_sets(datadir, one_hot=True, reshape=False)
        X_train = np.vstack((mnist.train.images, mnist.validation.images))
        Y_train = np.vstack((mnist.train.labels, mnist.validation.labels))
        X_test = mnist.test.images
        Y_test = mnist.test.labels
    else:
        warnings.warn("CleverHans support for Theano is deprecated and "
                      "will be dropped on 2017-11-08.")
        import keras
        from keras.datasets import mnist
        from keras.utils import np_utils

        # These values are specific to MNIST
        img_rows = 28
        img_cols = 28
        nb_classes = 10

        # the data, shuffled and split between train and test sets
        (X_train, y_train), (X_test, y_test) = mnist.load_data()

        if keras.backend.image_dim_ordering() == 'th':
            X_train = X_train.reshape(X_train.shape[0], 1, img_rows, img_cols)
            X_test = X_test.reshape(X_test.shape[0], 1, img_rows, img_cols)

        X_train = X_train.astype('float32')
        X_test = X_test.astype('float32')
        X_train /= 255
        X_test /= 255

        # convert class vectors to binary class matrices
        Y_train = np_utils.to_categorical(y_train, nb_classes)
        Y_test = np_utils.to_categorical(y_test, nb_classes)

    X_train = X_train[train_start:train_end]
    Y_train = Y_train[train_start:train_end]
    X_test = X_test[test_start:test_end]
    Y_test = Y_test[test_start:test_end]

    print('X_train shape:', X_train.shape)
    print('X_test shape:', X_test.shape)

    return X_train, Y_train, X_test, Y_test 
開發者ID:evtimovi,項目名稱:robust_physical_perturbations,代碼行數:63,代碼來源:utils_mnist.py

示例9: eval_model

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import datasets [as 別名]
def eval_model():
    model = createDenseNet(nb_classes=nb_classes,img_dim=img_dim,depth=densenet_depth,
                  growth_rate = densenet_growth_rate)
    model.load_weights(check_point_file)
    optimizer = Adam()
    model.compile(loss='categorical_crossentropy',optimizer=optimizer,metrics=['accuracy'])
    
    label_list_path = 'datasets/cifar-10-batches-py/batches.meta'   
    keras_dir = os.path.expanduser(os.path.join('~', '.keras'))
    datadir_base = os.path.expanduser(keras_dir)
    if not os.access(datadir_base, os.W_OK):
        datadir_base = os.path.join('/tmp', '.keras')
    label_list_path = os.path.join(datadir_base, label_list_path)
    with open(label_list_path, mode='rb') as f:
        labels = pickle.load(f)
    
    (x_train,y_train),(x_test,y_test) = cifar10.load_data()
    x_test = x_test.astype('float32')
    x_test /= 255
    y_test= keras.utils.to_categorical(y_test, nb_classes)
    test_datagen = getDataGenerator(train_phase=False)
    test_datagen = test_datagen.flow(x_test,y_test,batch_size = batch_size,shuffle=False)
    
    # Evaluate model with test data set and share sample prediction results
    evaluation = model.evaluate_generator(test_datagen,
                                        steps=x_test.shape[0] // batch_size,
                                        workers=4)
    print('Model Accuracy = %.2f' % (evaluation[1]))
    
    counter = 0
    figure = plt.figure()
    plt.subplots_adjust(left=0.1,bottom=0.1, right=0.9, top=0.9,hspace=0.5, wspace=0.3)
    for x_batch,y_batch in test_datagen:
        predict_res = model.predict_on_batch(x_batch)
        for i in range(batch_size):
            actual_label = labels['label_names'][np.argmax(y_batch[i])]
            predicted_label = labels['label_names'][np.argmax(predict_res[i])]
            if actual_label != predicted_label:
                counter += 1
                pics_raw = x_batch[i]
                pics_raw *= 255
                pics = array_to_img(pics_raw)
                ax = plt.subplot(25//5, 5, counter)
                ax.axis('off')
                ax.set_title(predicted_label)
                plt.imshow(pics)
            if counter >= 25:
                plt.savefig("./wrong_predicted.jpg")
                break
        if counter >= 25:
                break
    print("Everything seems OK...") 
開發者ID:Kexiii,項目名稱:DenseNet-Cifar10,代碼行數:54,代碼來源:cifar10_eval.py

示例10: testDataGenerator

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import datasets [as 別名]
def testDataGenerator(pics_num):
    """visualize the pics after data augmentation
    Args:
        pics_num:
            the number of pics you want to observe
    return:
        None
    """
    
    print("Now, we are testing data generator......")
    
    (x_train,y_train),(x_test,y_test) = cifar10.load_data()
    x_train = x_train.astype('float32')
    y_train = keras.utils.to_categorical(y_train, 10)
    
    # Load label names to use in prediction results
    label_list_path = 'datasets/cifar-10-batches-py/batches.meta'
    keras_dir = os.path.expanduser(os.path.join('~', '.keras'))
    datadir_base = os.path.expanduser(keras_dir)
    if not os.access(datadir_base, os.W_OK):
        datadir_base = os.path.join('/tmp', '.keras')
    label_list_path = os.path.join(datadir_base, label_list_path)
    with open(label_list_path, mode='rb') as f:
        labels = pickle.load(f)
    
    datagen = getDataGenerator(train_phase=True)
    """
    x_batch is a [-1,row,col,channel] np array
    y_batch is a [-1,labels] np array
    """
    figure = plt.figure()
    plt.subplots_adjust(left=0.1,bottom=0.1, right=0.9, top=0.9,hspace=0.5, wspace=0.3)
    for x_batch,y_batch in datagen.flow(x_train,y_train,batch_size = pics_num):
        for i in range(pics_num):
            pics_raw = x_batch[i]
            pics = array_to_img(pics_raw)
            ax = plt.subplot(pics_num//5, 5, i+1)
            ax.axis('off')
            ax.set_title(labels['label_names'][np.argmax(y_batch[i])])
            plt.imshow(pics)
        plt.savefig("./processed_data.jpg")
        break   
    print("Everything seems OK...") 
開發者ID:Kexiii,項目名稱:DenseNet-Cifar10,代碼行數:45,代碼來源:data_input.py


注:本文中的keras.datasets方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。