本文整理匯總了Python中keras.datasets方法的典型用法代碼示例。如果您正苦於以下問題:Python keras.datasets方法的具體用法?Python keras.datasets怎麽用?Python keras.datasets使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類keras
的用法示例。
在下文中一共展示了keras.datasets方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_ShapLinearExplainer
# 需要導入模塊: import keras [as 別名]
# 或者: from keras import datasets [as 別名]
def test_ShapLinearExplainer(self):
corpus, y = shap.datasets.imdb()
corpus_train, corpus_test, y_train, y_test = train_test_split(corpus, y, test_size=0.2, random_state=7)
vectorizer = TfidfVectorizer(min_df=10)
X_train = vectorizer.fit_transform(corpus_train)
X_test = vectorizer.transform(corpus_test)
model = sklearn.linear_model.LogisticRegression(penalty="l1", C=0.1, solver='liblinear')
model.fit(X_train, y_train)
shapexplainer = LinearExplainer(model, X_train, feature_dependence="independent")
shap_values = shapexplainer.explain_instance(X_test)
print("Invoked Shap LinearExplainer")
# comment this test as travis runs out of resources
示例2: test_ShapGradientExplainer
# 需要導入模塊: import keras [as 別名]
# 或者: from keras import datasets [as 別名]
def test_ShapGradientExplainer(self):
# model = VGG16(weights='imagenet', include_top=True)
# X, y = shap.datasets.imagenet50()
# to_explain = X[[39, 41]]
#
# url = "https://s3.amazonaws.com/deep-learning-models/image-models/imagenet_class_index.json"
# fname = shap.datasets.cache(url)
# with open(fname) as f:
# class_names = json.load(f)
#
# def map2layer(x, layer):
# feed_dict = dict(zip([model.layers[0].input], [preprocess_input(x.copy())]))
# return K.get_session().run(model.layers[layer].input, feed_dict)
#
# e = GradientExplainer((model.layers[7].input, model.layers[-1].output),
# map2layer(preprocess_input(X.copy()), 7))
# shap_values, indexes = e.explain_instance(map2layer(to_explain, 7), ranked_outputs=2)
#
print("Skipped Shap GradientExplainer")
示例3: get_dataset
# 需要導入模塊: import keras [as 別名]
# 或者: from keras import datasets [as 別名]
def get_dataset():
"""
Return processed and reshaped dataset for training
In this cases Fashion-mnist dataset.
"""
# load mnist dataset
(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()
# test and train datasets
print("Nb Train:", x_train.shape[0], "Nb test:",x_test.shape[0])
x_train = x_train.reshape(x_train.shape[0], img_h, img_w, 1)
x_test = x_test.reshape(x_test.shape[0], img_h, img_w, 1)
in_shape = (img_h, img_w, 1)
# normalize inputs
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255.0
x_test /= 255.0
# convert to one hot vectors
y_train = keras.utils.to_categorical(y_train, nb_class)
y_test = keras.utils.to_categorical(y_test, nb_class)
return x_train, x_test, y_train, y_test
示例4: build_data
# 需要導入模塊: import keras [as 別名]
# 或者: from keras import datasets [as 別名]
def build_data(self):
"""Returns the train and test datasets and their labels"""
# load original mnist dataset and expand each number with embedded "0"s
(x_train, y_train), (x_test, y_test) = mnist.load_data()
embedding_img = x_train[1]
x_train = np.array([self.expand_img(embedding_img, img) for img, label in zip(x_train, y_train)])
x_test = np.array([self.expand_img(embedding_img, img) for img, label in zip(x_test, y_test)])
if K.image_data_format() == 'channels_first':
x_train = x_train.reshape(x_train.shape[0], 1, self.img_rows, self.img_cols)
x_test = x_test.reshape(x_test.shape[0], 1, self.img_rows, self.img_cols)
else:
x_train = x_train.reshape(x_train.shape[0], self.img_rows, self.img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], self.img_rows, self.img_cols, 1)
# normalize and cast
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, self.num_classes)
y_test = keras.utils.to_categorical(y_test, self.num_classes)
return x_train, x_test, y_train, y_test
示例5: data_cifar10
# 需要導入模塊: import keras [as 別名]
# 或者: from keras import datasets [as 別名]
def data_cifar10(train_start=0, train_end=50000, test_start=0, test_end=10000):
"""
Preprocess CIFAR10 dataset
:return:
"""
global keras
if keras is None:
import keras
from keras.datasets import cifar10
from keras.utils import np_utils
# These values are specific to CIFAR10
img_rows = 32
img_cols = 32
nb_classes = 10
# the data, shuffled and split between train and test sets
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
if keras.backend.image_dim_ordering() == 'th':
x_train = x_train.reshape(x_train.shape[0], 3, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[0], 3, img_rows, img_cols)
else:
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 3)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 3)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
# convert class vectors to binary class matrices
y_train = np_utils.to_categorical(y_train, nb_classes)
y_test = np_utils.to_categorical(y_test, nb_classes)
x_train = x_train[train_start:train_end, :, :, :]
y_train = y_train[train_start:train_end, :]
x_test = x_test[test_start:test_end, :]
y_test = y_test[test_start:test_end, :]
return x_train, y_train, x_test, y_test
示例6: test_Shap
# 需要導入模塊: import keras [as 別名]
# 或者: from keras import datasets [as 別名]
def test_Shap(self):
np.random.seed(1)
X_train, X_test, Y_train, Y_test = train_test_split(*shap.datasets.iris(), test_size=0.2, random_state=0)
# K-nearest neighbors
knn = sklearn.neighbors.KNeighborsClassifier()
knn.fit(X_train, Y_train)
v = 100*np.sum(knn.predict(X_test) == Y_test)/len(Y_test)
print("Accuracy = {0}%".format(v))
# Explain a single prediction from the test set
shapexplainer = KernelExplainer(knn.predict_proba, X_train)
shap_values = shapexplainer.explain_instance(X_test.iloc[0,:]) # TODO test against original SHAP Lib
print('knn X_test iloc_0')
print(shap_values)
print(shapexplainer.explainer.expected_value[0])
print(shap_values[0])
# Explain all the predictions in the test set
shap_values = shapexplainer.explain_instance(X_test)
print('knn X_test')
print(shap_values)
print(shapexplainer.explainer.expected_value[0])
print(shap_values[0])
# SV machine with a linear kernel
svc_linear = sklearn.svm.SVC(kernel='linear', probability=True)
svc_linear.fit(X_train, Y_train)
v = 100*np.sum(svc_linear.predict(X_test) == Y_test)/len(Y_test)
print("Accuracy = {0}%".format(v))
# Explain all the predictions in the test set
shapexplainer = KernelExplainer(svc_linear.predict_proba, X_train)
shap_values = shapexplainer.explain_instance(X_test)
print('svc X_test')
print(shap_values)
print(shapexplainer.explainer.expected_value[0])
print(shap_values[0])
np.random.seed(1)
X,y = shap.datasets.adult()
X_train, X_valid, y_train, y_valid = sklearn.model_selection.train_test_split(X, y, test_size=0.2, random_state=7)
knn = sklearn.neighbors.KNeighborsClassifier()
knn.fit(X_train, y_train)
f = lambda x: knn.predict_proba(x)[:,1]
med = X_train.median().values.reshape((1,X_train.shape[1]))
shapexplainer = KernelExplainer(f, med)
shap_values_single = shapexplainer.explain_instance(X.iloc[0,:], nsamples=1000)
print('Shap Tabular Example')
print(shapexplainer.explainer.expected_value)
print(shap_values_single)
print("Invoked Shap KernelExplainer")
示例7: test_ShapTreeExplainer
# 需要導入模塊: import keras [as 別名]
# 或者: from keras import datasets [as 別名]
def test_ShapTreeExplainer(self):
X, y = shap.datasets.nhanesi()
X_display, y_display = shap.datasets.nhanesi(display=True) # human readable feature values
xgb_full = xgboost.DMatrix(X, label=y)
# create a train/test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=7)
xgb_train = xgboost.DMatrix(X_train, label=y_train)
xgb_test = xgboost.DMatrix(X_test, label=y_test)
# use validation set to choose # of trees
params = {
"eta": 0.002,
"max_depth": 3,
"objective": "survival:cox",
"subsample": 0.5
}
model_train = xgboost.train(params, xgb_train, 10000, evals=[(xgb_test, "test")], verbose_eval=1000)
# train final model on the full data set
params = {
"eta": 0.002,
"max_depth": 3,
"objective": "survival:cox",
"subsample": 0.5
}
model = xgboost.train(params, xgb_full, 5000, evals=[(xgb_full, "test")], verbose_eval=1000)
def c_statistic_harrell(pred, labels):
total = 0
matches = 0
for i in range(len(labels)):
for j in range(len(labels)):
if labels[j] > 0 and abs(labels[i]) > labels[j]:
total += 1
if pred[j] > pred[i]:
matches += 1
return matches / total
# see how well we can order people by survival
c_statistic_harrell(model_train.predict(xgb_test, ntree_limit=5000), y_test)
shap_values = TreeExplainer(model).explain_instance(X)
print("Invoked Shap TreeExplainer")
示例8: data_mnist
# 需要導入模塊: import keras [as 別名]
# 或者: from keras import datasets [as 別名]
def data_mnist(datadir='/tmp/', train_start=0, train_end=60000, test_start=0,
test_end=10000):
"""
Load and preprocess MNIST dataset
:param datadir: path to folder where data should be stored
:param train_start: index of first training set example
:param train_end: index of last training set example
:param test_start: index of first test set example
:param test_end: index of last test set example
:return: tuple of four arrays containing training data, training labels,
testing data and testing labels.
"""
assert isinstance(train_start, int)
assert isinstance(train_end, int)
assert isinstance(test_start, int)
assert isinstance(test_end, int)
if 'tensorflow' in sys.modules:
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets(datadir, one_hot=True, reshape=False)
X_train = np.vstack((mnist.train.images, mnist.validation.images))
Y_train = np.vstack((mnist.train.labels, mnist.validation.labels))
X_test = mnist.test.images
Y_test = mnist.test.labels
else:
warnings.warn("CleverHans support for Theano is deprecated and "
"will be dropped on 2017-11-08.")
import keras
from keras.datasets import mnist
from keras.utils import np_utils
# These values are specific to MNIST
img_rows = 28
img_cols = 28
nb_classes = 10
# the data, shuffled and split between train and test sets
(X_train, y_train), (X_test, y_test) = mnist.load_data()
if keras.backend.image_dim_ordering() == 'th':
X_train = X_train.reshape(X_train.shape[0], 1, img_rows, img_cols)
X_test = X_test.reshape(X_test.shape[0], 1, img_rows, img_cols)
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_train /= 255
X_test /= 255
# convert class vectors to binary class matrices
Y_train = np_utils.to_categorical(y_train, nb_classes)
Y_test = np_utils.to_categorical(y_test, nb_classes)
X_train = X_train[train_start:train_end]
Y_train = Y_train[train_start:train_end]
X_test = X_test[test_start:test_end]
Y_test = Y_test[test_start:test_end]
print('X_train shape:', X_train.shape)
print('X_test shape:', X_test.shape)
return X_train, Y_train, X_test, Y_test
示例9: eval_model
# 需要導入模塊: import keras [as 別名]
# 或者: from keras import datasets [as 別名]
def eval_model():
model = createDenseNet(nb_classes=nb_classes,img_dim=img_dim,depth=densenet_depth,
growth_rate = densenet_growth_rate)
model.load_weights(check_point_file)
optimizer = Adam()
model.compile(loss='categorical_crossentropy',optimizer=optimizer,metrics=['accuracy'])
label_list_path = 'datasets/cifar-10-batches-py/batches.meta'
keras_dir = os.path.expanduser(os.path.join('~', '.keras'))
datadir_base = os.path.expanduser(keras_dir)
if not os.access(datadir_base, os.W_OK):
datadir_base = os.path.join('/tmp', '.keras')
label_list_path = os.path.join(datadir_base, label_list_path)
with open(label_list_path, mode='rb') as f:
labels = pickle.load(f)
(x_train,y_train),(x_test,y_test) = cifar10.load_data()
x_test = x_test.astype('float32')
x_test /= 255
y_test= keras.utils.to_categorical(y_test, nb_classes)
test_datagen = getDataGenerator(train_phase=False)
test_datagen = test_datagen.flow(x_test,y_test,batch_size = batch_size,shuffle=False)
# Evaluate model with test data set and share sample prediction results
evaluation = model.evaluate_generator(test_datagen,
steps=x_test.shape[0] // batch_size,
workers=4)
print('Model Accuracy = %.2f' % (evaluation[1]))
counter = 0
figure = plt.figure()
plt.subplots_adjust(left=0.1,bottom=0.1, right=0.9, top=0.9,hspace=0.5, wspace=0.3)
for x_batch,y_batch in test_datagen:
predict_res = model.predict_on_batch(x_batch)
for i in range(batch_size):
actual_label = labels['label_names'][np.argmax(y_batch[i])]
predicted_label = labels['label_names'][np.argmax(predict_res[i])]
if actual_label != predicted_label:
counter += 1
pics_raw = x_batch[i]
pics_raw *= 255
pics = array_to_img(pics_raw)
ax = plt.subplot(25//5, 5, counter)
ax.axis('off')
ax.set_title(predicted_label)
plt.imshow(pics)
if counter >= 25:
plt.savefig("./wrong_predicted.jpg")
break
if counter >= 25:
break
print("Everything seems OK...")
示例10: testDataGenerator
# 需要導入模塊: import keras [as 別名]
# 或者: from keras import datasets [as 別名]
def testDataGenerator(pics_num):
"""visualize the pics after data augmentation
Args:
pics_num:
the number of pics you want to observe
return:
None
"""
print("Now, we are testing data generator......")
(x_train,y_train),(x_test,y_test) = cifar10.load_data()
x_train = x_train.astype('float32')
y_train = keras.utils.to_categorical(y_train, 10)
# Load label names to use in prediction results
label_list_path = 'datasets/cifar-10-batches-py/batches.meta'
keras_dir = os.path.expanduser(os.path.join('~', '.keras'))
datadir_base = os.path.expanduser(keras_dir)
if not os.access(datadir_base, os.W_OK):
datadir_base = os.path.join('/tmp', '.keras')
label_list_path = os.path.join(datadir_base, label_list_path)
with open(label_list_path, mode='rb') as f:
labels = pickle.load(f)
datagen = getDataGenerator(train_phase=True)
"""
x_batch is a [-1,row,col,channel] np array
y_batch is a [-1,labels] np array
"""
figure = plt.figure()
plt.subplots_adjust(left=0.1,bottom=0.1, right=0.9, top=0.9,hspace=0.5, wspace=0.3)
for x_batch,y_batch in datagen.flow(x_train,y_train,batch_size = pics_num):
for i in range(pics_num):
pics_raw = x_batch[i]
pics = array_to_img(pics_raw)
ax = plt.subplot(pics_num//5, 5, i+1)
ax.axis('off')
ax.set_title(labels['label_names'][np.argmax(y_batch[i])])
plt.imshow(pics)
plt.savefig("./processed_data.jpg")
break
print("Everything seems OK...")