當前位置: 首頁>>代碼示例>>Python>>正文


Python keras.constraints方法代碼示例

本文整理匯總了Python中keras.constraints方法的典型用法代碼示例。如果您正苦於以下問題:Python keras.constraints方法的具體用法?Python keras.constraints怎麽用?Python keras.constraints使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras的用法示例。


在下文中一共展示了keras.constraints方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: build

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import constraints [as 別名]
def build(self):
        try:
            self.input_ndim = len(self.previous.input_shape)
        except AttributeError:
            self.input_ndim = len(self.input_shape)

        self.layer.set_input_shape((None, ) + self.input_shape[2:])

        if hasattr(self.layer, 'regularizers'):
            self.regularizers = self.layer.regularizers

        if hasattr(self.layer, 'constraints'):
            self.constraints = self.layer.constraints
        
        if hasattr(self.layer, 'trainable_weights'):
            self.trainable_weights = self.layer.trainable_weights

            if self.initial_weights is not None:
                self.layer.set_weights(self.initial_weights)
                del self.initial_weights 
開發者ID:textclf,項目名稱:fancy-cnn,代碼行數:22,代碼來源:timedistributed.py

示例2: get_config

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import constraints [as 別名]
def get_config(self):
        config = {
            'axis': self.axis,
            'momentum': self.momentum,
            'epsilon': self.epsilon,
            'center': self.center,
            'scale': self.scale,
            'beta_initializer':              sanitizedInitSer(self.beta_initializer),
            'gamma_diag_initializer':        sanitizedInitSer(self.gamma_diag_initializer),
            'gamma_off_initializer':         sanitizedInitSer(self.gamma_off_initializer),
            'moving_mean_initializer':       sanitizedInitSer(self.moving_mean_initializer),
            'moving_variance_initializer':   sanitizedInitSer(self.moving_variance_initializer),
            'moving_covariance_initializer': sanitizedInitSer(self.moving_covariance_initializer),
            'beta_regularizer':              regularizers.serialize(self.beta_regularizer),
            'gamma_diag_regularizer':        regularizers.serialize(self.gamma_diag_regularizer),
            'gamma_off_regularizer':         regularizers.serialize(self.gamma_off_regularizer),
            'beta_constraint':               constraints .serialize(self.beta_constraint),
            'gamma_diag_constraint':         constraints .serialize(self.gamma_diag_constraint),
            'gamma_off_constraint':          constraints .serialize(self.gamma_off_constraint),
        }
        base_config = super(ComplexBatchNormalization, self).get_config()
        return dict(list(base_config.items()) + list(config.items())) 
開發者ID:ChihebTrabelsi,項目名稱:deep_complex_networks,代碼行數:24,代碼來源:bn.py

示例3: __init__

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import constraints [as 別名]
def __init__(self, input_dim, output_dim, init='uniform', input_length=None,
                 W_regularizer=None, activity_regularizer=None, W_constraint=None,
                 mask_zero=False, weights=None, **kwargs):
        self.input_dim = input_dim
        self.output_dim = output_dim
        self.init = initializations.get(init)
        self.input_length = input_length
        self.mask_zero = mask_zero

        self.W_constraint = constraints.get(W_constraint)
        self.constraints = [self.W_constraint]

        self.W_regularizer = regularizers.get(W_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)

        self.initial_weights = weights
        kwargs['input_shape'] = (self.input_dim,)
        super(FixedEmbedding, self).__init__(**kwargs) 
開發者ID:UKPLab,項目名稱:deeplearning4nlp-tutorial,代碼行數:20,代碼來源:FixedEmbedding.py

示例4: __init__

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import constraints [as 別名]
def __init__(self, output_dim, init='glorot_uniform', activation='linear', weights=None,
                 W_regularizer=None, b_regularizer=None, activity_regularizer=None,
                 W_constraint=None, b_constraint=None, input_dim=None, **kwargs):
        self.init = initializations.get(init)
        self.activation = activations.get(activation)
        self.output_dim = output_dim

        self.W_regularizer = regularizers.get(W_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)

        self.W_constraint = constraints.get(W_constraint)
        self.b_constraint = constraints.get(b_constraint)
        self.constraints = [self.W_constraint, self.b_constraint]

        self.initial_weights = weights

        self.input_dim = input_dim
        if self.input_dim:
            kwargs['input_shape'] = (self.input_dim,)
        super(ConvolutionalMaxOverTime, self).__init__(**kwargs) 
開發者ID:UKPLab,項目名稱:deeplearning4nlp-tutorial,代碼行數:23,代碼來源:ConvolutionalMaxOverTime.py

示例5: __init__

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import constraints [as 別名]
def __init__(self,
                 axis=-1,
                 momentum=0.9,
                 epsilon=1e-4,
                 center=True,
                 scale=True,
                 beta_initializer='zeros',
                 gamma_diag_initializer='sqrt_init',
                 gamma_off_initializer='zeros',
                 moving_mean_initializer='zeros',
                 moving_variance_initializer='sqrt_init',
                 moving_covariance_initializer='zeros',
                 beta_regularizer=None,
                 gamma_diag_regularizer=None,
                 gamma_off_regularizer=None,
                 beta_constraint=None,
                 gamma_diag_constraint=None,
                 gamma_off_constraint=None,
                 **kwargs):
        super(ComplexBatchNormalization, self).__init__(**kwargs)
        self.supports_masking = True
        self.axis = axis
        self.momentum = momentum
        self.epsilon = epsilon
        self.center = center
        self.scale = scale
        self.beta_initializer              = sanitizedInitGet(beta_initializer)
        self.gamma_diag_initializer        = sanitizedInitGet(gamma_diag_initializer)
        self.gamma_off_initializer         = sanitizedInitGet(gamma_off_initializer)
        self.moving_mean_initializer       = sanitizedInitGet(moving_mean_initializer)
        self.moving_variance_initializer   = sanitizedInitGet(moving_variance_initializer)
        self.moving_covariance_initializer = sanitizedInitGet(moving_covariance_initializer)
        self.beta_regularizer              = regularizers.get(beta_regularizer)
        self.gamma_diag_regularizer        = regularizers.get(gamma_diag_regularizer)
        self.gamma_off_regularizer         = regularizers.get(gamma_off_regularizer)
        self.beta_constraint               = constraints .get(beta_constraint)
        self.gamma_diag_constraint         = constraints .get(gamma_diag_constraint)
        self.gamma_off_constraint          = constraints .get(gamma_off_constraint) 
開發者ID:ChihebTrabelsi,項目名稱:deep_complex_networks,代碼行數:40,代碼來源:bn.py


注:本文中的keras.constraints方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。