當前位置: 首頁>>代碼示例>>Python>>正文


Python keras.callbacks方法代碼示例

本文整理匯總了Python中keras.callbacks方法的典型用法代碼示例。如果您正苦於以下問題:Python keras.callbacks方法的具體用法?Python keras.callbacks怎麽用?Python keras.callbacks使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras的用法示例。


在下文中一共展示了keras.callbacks方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: lr_schedule

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import callbacks [as 別名]
def lr_schedule(epoch):
    """Learning Rate Schedule
    Learning rate is scheduled to be reduced after 80, 120, 160, 180 epochs.
    Called automatically every epoch as part of callbacks during training.
    # Arguments
        epoch (int): The number of epochs
    # Returns
        lr (float32): learning rate
    """
    lr = 1e-3
    if epoch > 180:
        lr *= 0.5e-3
    elif epoch > 160:
        lr *= 1e-3
    elif epoch > 120:
        lr *= 1e-2
    elif epoch > 80:
        lr *= 1e-1
    print('Learning rate: ', lr)
    return lr 
開發者ID:IBM,項目名稱:AIX360,代碼行數:22,代碼來源:resnet_keras_model.py

示例2: train_simple_inference_net

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import callbacks [as 別名]
def train_simple_inference_net(n_epochs=30):
    inf_net = SimpleInferenceNet()
    tr_ids, val_ids, te_ids = train_document_ids(), validation_document_ids(), test_document_ids()
    tr_ids = list(train_document_ids())
    train_Xy, inference_vectorizer = get_train_Xy(tr_ids, sections_of_interest=None, vocabulary_file=None, include_sentence_span_splits=False, include_raw_texts=True)

    X_k, y_k = make_Xy_inference(train_Xy, inf_net.bc)
    print("train data for inference task loaded!")

    val_Xy = get_Xy(val_ids, inference_vectorizer,  include_raw_texts=True)
    X_kv, y_kv = make_Xy_inference(val_Xy, inf_net.bc)
    print("val data loaded!")

    filepath="inference.weights.best.hdf5"
    checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=1, save_best_only=True, mode='max')
    callbacks_list = [checkpoint]

    with open("inference_model.json", "w") as outf:
        outf.write(inf_net.model.to_json())

    print("fitting inference model!")
    inf_net.model.fit(X_k, y_k, validation_data=(X_kv, y_kv), callbacks=callbacks_list, epochs=n_epochs) 
開發者ID:ijmarshall,項目名稱:robotreviewer,代碼行數:24,代碼來源:punchline_extractor.py

示例3: lr_schedule

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import callbacks [as 別名]
def lr_schedule(epoch):
    """Learning Rate Schedule
    Learning rate is scheduled to be reduced after 80, 120, 160, 180 epochs.
    Called automatically every epoch as part of callbacks during training.
    # Arguments
        epoch (int): The number of epochs
    # Returns
        lr (float32): learning rate
    """
    lr = 1e-3
    if epoch > 30:
        lr *= 1e-2
    elif epoch > 15:
        lr *= 1e-1
    print('Learning rate: ', lr)
    return lr 
開發者ID:P2333,項目名稱:Adaptive-Diversity-Promoting,代碼行數:18,代碼來源:train_mnist.py

示例4: lr_schedule

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import callbacks [as 別名]
def lr_schedule(epoch):
    """Learning Rate Schedule
    Learning rate is scheduled to be reduced after 80, 120, 160, 180 epochs.
    Called automatically every epoch as part of callbacks during training.
    # Arguments
        epoch (int): The number of epochs
    # Returns
        lr (float32): learning rate
    """
    lr = 1e-3
    if epoch > 150:
        lr *= 1e-2
    elif epoch > 100:
        lr *= 1e-1
    print('Learning rate: ', lr)
    return lr 
開發者ID:P2333,項目名稱:Adaptive-Diversity-Promoting,代碼行數:18,代碼來源:train_cifar.py

示例5: lr_schedule

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import callbacks [as 別名]
def lr_schedule(epoch):
    """Learning Rate Schedule
    Learning rate is scheduled to be reduced after 80, 120, 160, 180 epochs.
    Called automatically every epoch as part of callbacks during training.
    # Arguments
        epoch (int): The number of epochs
    # Returns
        lr (float32): learning rate
    """
    lr = 1e-3
    if epoch > 160:
        lr *= 1e-3
    elif epoch > 120:
        lr *= 1e-2
    elif epoch > 80:
        lr *= 1e-1
    print('Learning rate: ', lr)
    return lr 
開發者ID:P2333,項目名稱:Adaptive-Diversity-Promoting,代碼行數:20,代碼來源:advtrain_cifar10.py

示例6: train

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import callbacks [as 別名]
def train():
    # load data
    train_dataset = Dataset(training=True)
    dev_dataset = Dataset(training=False)

    # model
    MODEL = name_model[model_name]
    model = MODEL(train_dataset.vocab_size, conf.n_classes, train_dataset.emb_mat)

    # callback
    my_callback = MyCallback()
    f1 = F1(dev_dataset.gen_batch_data(), dev_dataset.steps_per_epoch)
    checkpointer = ModelCheckpoint('data/{}.hdf5'.format(model_name), save_best_only=True)
    early_stop = EarlyStopping(monitor='val_loss', patience=5, verbose=0, mode='auto')

    # train
    model.compile(optimizer=keras.optimizers.Adam(),
                  loss=keras.losses.categorical_crossentropy, metrics=['acc'])
    model.fit_generator(train_dataset.gen_batch_data(),
                        steps_per_epoch=train_dataset.steps_per_epoch,
                        verbose=0,
                        epochs=conf.epochs, callbacks=[my_callback, checkpointer, early_stop, f1])
    keras.models.save_model(model, conf.model_path.format(model_name)) 
開發者ID:moxiu2012,項目名稱:PJ_NLP,代碼行數:25,代碼來源:train.py

示例7: lr_schedule

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import callbacks [as 別名]
def lr_schedule(epoch):
    """
    Learning Rate Schedule
    """
    # Learning rate is scheduled to be reduced after 80, 120, 160, 180  epochs. Called  automatically  every
    #  epoch as part  of  callbacks  during  training.



    lr = 1e-3
    if epoch > 180:
        lr *= 1e-4
    elif epoch > 160:
        lr *= 1e-3
    elif epoch > 120:
        lr *= 1e-2
    elif epoch > 80:
        lr *= 1e-1

    print('Learning rate: ', lr)
    return lr 
開發者ID:OlafenwaMoses,項目名稱:IdenProf,代碼行數:23,代碼來源:idenprof.py

示例8: lr_schedule

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import callbacks [as 別名]
def lr_schedule(epoch):
    """Learning Rate Schedule
    Learning rate is scheduled to be reduced after 80, 120, 160, 180 epochs.
    Called automatically every epoch as part of callbacks during training.
    # Arguments
        epoch (int): The number of epochs
    # Returns
        lr (float32): learning rate
    """
    lr = 0.001
    epoch += 1

    # if epoch >= 90:
    #     lr *= 5e-2
    # elif epoch >= 60:
    #     lr *= 1e-1
    # elif epoch >= 30:
    #     lr *= 5e-1

    if epoch >= 150:
        lr *= 0.1
    print('Learning rate: ', lr)
    return lr 
開發者ID:titu1994,項目名稱:keras-adabound,代碼行數:25,代碼來源:cifar10.py

示例9: train_model

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import callbacks [as 別名]
def train_model(model, epochs=10, min_size=5, max_size=20, callbacks=None, verboose=False):
    input_dim = model.input_dim
    output_dim = model.output_dim
    batch_size = model.batch_size

    sample_generator = get_sample(batch_size=batch_size, in_bits=input_dim, out_bits=output_dim,
                                                max_size=max_size, min_size=min_size)
    if verboose:
        for j in range(epochs):
            model.fit_generator(sample_generator, steps_per_epoch=10, epochs=j+1, callbacks=callbacks, initial_epoch=j)
            print("currently at epoch {0}".format(j+1))
            for i in [5,10,20,40]:
                test_model(model, sequence_length=i, verboose=True)
    else:
        model.fit_generator(sample_generator, steps_per_epoch=10, epochs=epochs, callbacks=callbacks)

    print("done training") 
開發者ID:flomlo,項目名稱:ntm_keras,代碼行數:19,代碼來源:testing_utils.py

示例10: lengthy_test

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import callbacks [as 別名]
def lengthy_test(model, testrange=[5,10,20,40,80], epochs=100, verboose=True):
    ts = datetime.now().strftime("%Y-%m-%d_%H:%M:%S")
    log_path = LOG_PATH_BASE + ts + "_-_" + model.name 
    tensorboard = TensorBoard(log_dir=log_path,
                                write_graph=False, #This eats a lot of space. Enable with caution!
                                #histogram_freq = 1,
                                write_images=True,
                                batch_size = model.batch_size,
                                write_grads=True)
    model_saver =  ModelCheckpoint(log_path + "/model.ckpt.{epoch:04d}.hdf5", monitor='loss', period=1)
    callbacks = [tensorboard, TerminateOnNaN(), model_saver]

    for i in testrange:
        acc = test_model(model, sequence_length=i, verboose=verboose)
        print("the accuracy for length {0} was: {1}%".format(i,acc))

    train_model(model, epochs=epochs, callbacks=callbacks, verboose=verboose)

    for i in testrange:
        acc = test_model(model, sequence_length=i, verboose=verboose)
        print("the accuracy for length {0} was: {1}%".format(i,acc))
    return 
開發者ID:flomlo,項目名稱:ntm_keras,代碼行數:24,代碼來源:testing_utils.py

示例11: lr_schedule

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import callbacks [as 別名]
def lr_schedule(epoch):
    """Learning Rate Schedule

    Learning rate is scheduled to be reduced after 80, 120, 160, 180 epochs.
    Called automatically every epoch as part of callbacks during training.

    # Arguments
        epoch (int): The number of epochs

    # Returns
        lr (float32): learning rate
    """
    lr = 1e-3
    if epoch > 180:
        lr *= 0.5e-3
    elif epoch > 160:
        lr *= 1e-3
    elif epoch > 120:
        lr *= 1e-2
    elif epoch > 80:
        lr *= 1e-1
    print('Learning rate: ', lr)
    return lr 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:25,代碼來源:cifar10_resnet.py

示例12: train

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import callbacks [as 別名]
def train(self):
        '''訓練模型'''
        number_of_epoch = len(self.files_content) // self.config.batch_size

        if not self.model:
            self.build_model()

        self.model.summary()

        self.model.fit_generator(
            generator=self.data_generator(),
            verbose=True,
            steps_per_epoch=self.config.batch_size,
            epochs=number_of_epoch,
            callbacks=[
                keras.callbacks.ModelCheckpoint(self.config.weight_file, save_weights_only=False),
                LambdaCallback(on_epoch_end=self.generate_sample_result)
            ]
        ) 
開發者ID:ioiogoo,項目名稱:poetry_generator_Keras,代碼行數:21,代碼來源:poetry_model.py

示例13: main

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import callbacks [as 別名]
def main():
#        Define X and y
# #        Load data
        PATH = "./data/64_64_1/offset_1.3/"
        X = np.load(PATH + "basic_dataset_img.npz")
        y = np.load(PATH + "basic_dataset_pts.npz")
        X = X['arr_0']
        y = y['arr_0'].reshape(-1, 136)
        

        print("Define X and Y")
        print("=======================================")
        
        # Split train / test dataset
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
        print("Success of getting train / test dataset")
        print("=======================================")
        print("X_train: ", X_train.shape)
        print("y_train: ", y_train.shape)
        print("X_test: ", X_test.shape)
        print("y_test: ", y_test.shape)
        print("=======================================")

        model.compile(loss=smoothL1, optimizer=keras.optimizers.Adam(lr=1e-3), metrics=['mape'])
        print(model.summary())
        # checkpoint
        filepath="./mobilenet_checkpoints/smooth_L1-{epoch:02d}-{val_mean_absolute_percentage_error:.5f}.hdf5"
        checkpoint = ModelCheckpoint(filepath, monitor='val_loss', verbose=1, save_best_only=True, mode='min')
        callbacks_list = [checkpoint]
        history = model.fit(X_train, y_train, batch_size=64, epochs=10000, shuffle=True,\
                            verbose=1, validation_data=(X_test, y_test), callbacks=callbacks_list)

        # Save model
        model.save("./model/face_landmark_dnn.h5")
        print("=======================================")
        print("Save Final Model")
        print("=======================================") 
開發者ID:junhwanjang,項目名稱:face_landmark_dnn,代碼行數:39,代碼來源:train_mobilenets.py

示例14: main

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import callbacks [as 別名]
def main():
#        Define X and y
# #        Load data
        PATH = "./data/64_64_1/offset_1.3/"
        X = np.load(PATH + "basic_dataset_img.npz")
        y = np.load(PATH + "basic_dataset_pts.npz")
        X = X['arr_0']
        y = y['arr_0'].reshape(-1, 136)
        

        print("Define X and Y")
        print("=======================================")
        
        # Split train / test dataset
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
        print("Success of getting train / test dataset")
        print("=======================================")
        print("X_train: ", X_train.shape)
        print("y_train: ", y_train.shape)
        print("X_test: ", X_test.shape)
        print("y_test: ", y_test.shape)
        print("=======================================")

        model.compile(loss=smoothL1, optimizer=keras.optimizers.Adam(lr=1e-3), metrics=['mape'])
        print(model.summary())
        # checkpoint
        filepath="./basic_checkpoints/smooth_L1-{epoch:02d}-{val_mean_absolute_percentage_error:.5f}.hdf5"
        checkpoint = ModelCheckpoint(filepath, monitor='val_loss', verbose=1, save_best_only=True, mode='min')
        callbacks_list = [checkpoint]
        history = model.fit(X_train, y_train, batch_size=64, epochs=10000, shuffle=True,\
                            verbose=1, validation_data=(X_test, y_test), callbacks=callbacks_list)

        # Save model
        model.save("./model/face_landmark_dnn.h5")
        print("=======================================")
        print("Save Final Model")
        print("=======================================") 
開發者ID:junhwanjang,項目名稱:face_landmark_dnn,代碼行數:39,代碼來源:train_basic_models.py

示例15: train_net

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import callbacks [as 別名]
def train_net(net,
              train_gen,
              val_gen,
              train_num_examples,
              val_num_examples,
              num_epochs,
              checkpoint_filepath,
              start_epoch1):
    checkpointer = ModelCheckpoint(
        filepath=checkpoint_filepath,
        verbose=1,
        save_best_only=True)

    tic = time.time()

    net.fit_generator(
        generator=train_gen,
        samples_per_epoch=train_num_examples,
        epochs=num_epochs,
        verbose=True,
        callbacks=[checkpointer],
        validation_data=val_gen,
        validation_steps=val_num_examples,
        class_weight=None,
        max_queue_size=10,
        workers=1,
        use_multiprocessing=False,
        shuffle=True,
        initial_epoch=(start_epoch1 - 1))

    logging.info("Time cost: {:.4f} sec".format(
        time.time() - tic)) 
開發者ID:osmr,項目名稱:imgclsmob,代碼行數:34,代碼來源:train_ke.py


注:本文中的keras.callbacks方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。