當前位置: 首頁>>代碼示例>>Python>>正文


Python callbacks.TensorBoard方法代碼示例

本文整理匯總了Python中keras.callbacks.TensorBoard方法的典型用法代碼示例。如果您正苦於以下問題:Python callbacks.TensorBoard方法的具體用法?Python callbacks.TensorBoard怎麽用?Python callbacks.TensorBoard使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.callbacks的用法示例。


在下文中一共展示了callbacks.TensorBoard方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_call_back

# 需要導入模塊: from keras import callbacks [as 別名]
# 或者: from keras.callbacks import TensorBoard [as 別名]
def get_call_back():
    """
    定義call back
    :return:
    """
    checkpoint = ModelCheckpoint(filepath='/tmp/ctpn.{epoch:03d}.h5',
                                 monitor='val_loss',
                                 verbose=1,
                                 save_best_only=False,
                                 save_weights_only=True,
                                 period=5)

    # 驗證誤差沒有提升
    lr_reducer = ReduceLROnPlateau(monitor='loss',
                                   factor=0.1,
                                   cooldown=0,
                                   patience=10,
                                   min_lr=1e-4)
    log = TensorBoard(log_dir='log')
    return [lr_reducer, checkpoint, log] 
開發者ID:yizt,項目名稱:keras-ctpn,代碼行數:22,代碼來源:train.py

示例2: train

# 需要導入模塊: from keras import callbacks [as 別名]
# 或者: from keras.callbacks import TensorBoard [as 別名]
def train(model, image_data, y_true, log_dir='logs/'):
    '''retrain/fine-tune the model'''
    model.compile(optimizer='adam', loss={
        # use custom yolo_loss Lambda layer.
        'yolo_loss': lambda y_true, y_pred: y_pred})

    logging = TensorBoard(log_dir=log_dir)
    checkpoint = ModelCheckpoint(log_dir + "ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5",
        monitor='val_loss', save_weights_only=True, save_best_only=True)
    early_stopping = EarlyStopping(monitor='val_loss', min_delta=0, patience=5, verbose=1, mode='auto')

    model.fit([image_data, *y_true],
              np.zeros(len(image_data)),
              validation_split=.1,
              batch_size=32,
              epochs=30,
              callbacks=[logging, checkpoint, early_stopping])
    model.save_weights(log_dir + 'trained_weights.h5')
    # Further training. 
開發者ID:scutan90,項目名稱:YOLO-3D-Box,代碼行數:21,代碼來源:train.py

示例3: _create_callbacks

# 需要導入模塊: from keras import callbacks [as 別名]
# 或者: from keras.callbacks import TensorBoard [as 別名]
def _create_callbacks(self, saved_weights_name, model_to_save):

        checkpoint = CustomModelCheckpoint(
            model_to_save=model_to_save,
            filepath=saved_weights_name + 'ex-{epoch:03d}--loss-{loss:08.3f}.h5',
            monitor='loss',
            verbose=0,
            save_best_only=True,
            mode='min',
            period=1
        )
        reduce_on_plateau = ReduceLROnPlateau(
            monitor='loss',
            factor=0.1,
            patience=2,
            verbose=0,
            mode='min',
            epsilon=0.01,
            cooldown=0,
            min_lr=0
        )
        tensor_board = TensorBoard(
            log_dir=self.__logs_directory
        )
        return [checkpoint, reduce_on_plateau, tensor_board] 
開發者ID:OlafenwaMoses,項目名稱:ImageAI,代碼行數:27,代碼來源:__init__.py

示例4: train_model

# 需要導入模塊: from keras import callbacks [as 別名]
# 或者: from keras.callbacks import TensorBoard [as 別名]
def train_model(model, X, X_test, Y, Y_test):
    checkpoints = []
    if not os.path.exists('Data/Checkpoints/'):
        os.makedirs('Data/Checkpoints/')
    checkpoints.append(ModelCheckpoint('Data/Checkpoints/best_weights.h5', monitor='val_loss', verbose=0, save_best_only=True, save_weights_only=True, mode='auto', period=1))
    checkpoints.append(TensorBoard(log_dir='Data/Checkpoints/./logs', histogram_freq=0, write_graph=True, write_images=False, embeddings_freq=0, embeddings_layer_names=None, embeddings_metadata=None))

    # Creates live data:
    # For better yield. The duration of the training is extended.

    # If you don't want, use this:
    # model.fit(X, Y, batch_size=10, epochs=25, validation_data=(X_test, Y_test), shuffle=True, callbacks=checkpoints)

    from keras.preprocessing.image import ImageDataGenerator
    generated_data = ImageDataGenerator(featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=0,  width_shift_range=0.1, height_shift_range=0.1, horizontal_flip = True, vertical_flip = False)
    generated_data.fit(X)
    import numpy
    model.fit_generator(generated_data.flow(X, Y, batch_size=8), steps_per_epoch=X.shape[0]//8, epochs=25, validation_data=(X_test, Y_test), callbacks=checkpoints)

    return model 
開發者ID:ardamavi,項目名稱:Dog-Cat-Classifier,代碼行數:22,代碼來源:train.py

示例5: init_logging_callbacks

# 需要導入模塊: from keras import callbacks [as 別名]
# 或者: from keras.callbacks import TensorBoard [as 別名]
def init_logging_callbacks(self,log_dir=LOG_DIR_ROOT):

		self.checkpoint = ModelCheckpoint(filepath="%s/weights-improvement-{epoch:02d}-{loss:.4f}.hdf5" % (log_dir),\
														monitor='loss',\
														verbose=1,\
														save_best_only=True,\
														mode='min')

		self.early_stopping = EarlyStopping(monitor='loss',\
													min_delta=0,\
													patience=PATIENCE,\
													verbose=0,\
													mode='auto')	

		now = datetime.utcnow().strftime("%Y%m%d%H%M%S")	
		log_dir = "{}/run/{}".format(LOG_DIR_ROOT,now)
		self.tensorboard = TensorBoard(log_dir=log_dir,\
											write_graph=True,\
											write_images=True)
		
		self.callbacks = [self.early_stopping,\
								self.tensorboard,\
								self.checkpoint] 
開發者ID:k3170makan,項目名稱:PyMLProjects,代碼行數:25,代碼來源:model.py

示例6: get_callbacks

# 需要導入模塊: from keras import callbacks [as 別名]
# 或者: from keras.callbacks import TensorBoard [as 別名]
def get_callbacks(config_data, appendix=''):
    ret_callbacks = []
    model_stored = False
    callbacks = config_data['callbacks']
    if K._BACKEND == 'tensorflow':
        tensor_board = TensorBoard(log_dir=os.path.join('logging', config_data['tb_log_dir']), histogram_freq=10)
        ret_callbacks.append(tensor_board)
    for callback in callbacks:
        if callback['name'] == 'early_stopping':
            ret_callbacks.append(EarlyStopping(monitor=callback['monitor'], patience=callback['patience'], verbose=callback['verbose'], mode=callback['mode']))
        elif callback['name'] == 'model_checkpoit':
            model_stored = True
            path = config_data['output_path']
            basename = config_data['output_basename']
            base_path = os.path.join(path, basename)
            opath = os.path.join(base_path, 'best_model{}.h5'.format(appendix))
            save_best = bool(callback['save_best_only'])
            ret_callbacks.append(ModelCheckpoint(filepath=opath, verbose=callback['verbose'], save_best_only=save_best, monitor=callback['monitor'], mode=callback['mode']))
    return ret_callbacks, model_stored 
開發者ID:spinningbytes,項目名稱:deep-mlsa,代碼行數:21,代碼來源:run_utils.py

示例7: lengthy_test

# 需要導入模塊: from keras import callbacks [as 別名]
# 或者: from keras.callbacks import TensorBoard [as 別名]
def lengthy_test(model, testrange=[5,10,20,40,80], epochs=100, verboose=True):
    ts = datetime.now().strftime("%Y-%m-%d_%H:%M:%S")
    log_path = LOG_PATH_BASE + ts + "_-_" + model.name 
    tensorboard = TensorBoard(log_dir=log_path,
                                write_graph=False, #This eats a lot of space. Enable with caution!
                                #histogram_freq = 1,
                                write_images=True,
                                batch_size = model.batch_size,
                                write_grads=True)
    model_saver =  ModelCheckpoint(log_path + "/model.ckpt.{epoch:04d}.hdf5", monitor='loss', period=1)
    callbacks = [tensorboard, TerminateOnNaN(), model_saver]

    for i in testrange:
        acc = test_model(model, sequence_length=i, verboose=verboose)
        print("the accuracy for length {0} was: {1}%".format(i,acc))

    train_model(model, epochs=epochs, callbacks=callbacks, verboose=verboose)

    for i in testrange:
        acc = test_model(model, sequence_length=i, verboose=verboose)
        print("the accuracy for length {0} was: {1}%".format(i,acc))
    return 
開發者ID:flomlo,項目名稱:ntm_keras,代碼行數:24,代碼來源:testing_utils.py

示例8: main

# 需要導入模塊: from keras import callbacks [as 別名]
# 或者: from keras.callbacks import TensorBoard [as 別名]
def main():
    house_df = pd.read_csv('./data/housing.csv', sep='\s+', header=None)
    hose_set = house_df.values
    # print(hose_set)
    x = hose_set[:, 0:13]
    y = hose_set[:, 13]
    # print(y)

    # tbcallback=callbacks.TensorBoard(log_dir='./logs',histogram_freq=0, write_graph=True, write_images=True)
    estimators = []
    estimators.append(('mlp', KerasRegressor(build_fn=build_model, epochs=512, batch_size=32, verbose=1)))
    pipeline = Pipeline(estimators)
    kfold = KFold(n_splits=10, random_state=seed)

    # results = cross_val_score(estimator, x, y, cv=kfold)
    scores = cross_val_score(pipeline, x, y, cv=kfold)
    print('\n')
    print("Results: %.2f (%.2f) MSE" % (scores.mean(), scores.std())) 
開發者ID:jarvisqi,項目名稱:deep_learning,代碼行數:20,代碼來源:hous_price.py

示例9: train_seg_model

# 需要導入模塊: from keras import callbacks [as 別名]
# 或者: from keras.callbacks import TensorBoard [as 別名]
def train_seg_model(model, splitted_npy_dataset_path, test_path, epochs):
    test_XY = np.load(test_path+'/test.npy')
    X_test, Y_test = test_XY[0], test_XY[1]

    batch_dirs = listdir(splitted_npy_dataset_path)
    len_batch_dirs = len(batch_dirs)

    if not os.path.exists('Data/Checkpoints/'):
        os.makedirs('Data/Checkpoints/')
    checkpoints = []
    checkpoints.append(ModelCheckpoint('Data/Checkpoints/best_weights.h5', monitor='val_loss', verbose=0, save_best_only=False, save_weights_only=True, mode='auto', period=1))
    checkpoints.append(TensorBoard(log_dir='Data/Checkpoints/./logs', histogram_freq=0, write_graph=True, write_images=False, embeddings_freq=0, embeddings_layer_names=None, embeddings_metadata=None))

    for epoch in range(epochs):
        print('Epoch: {0}/{1}'.format(epoch+1, epochs))
        model.fit_generator(data_gen(splitted_npy_dataset_path), steps_per_epoch=batch_size, epochs=int(len_batch_dirs/batch_size), callbacks=checkpoints)

        scores = model.evaluate(X_test, Y_test)
        dice_score = dice_coefficient(model.predict(X_test), Y_test)
        print('Test loss:', scores[0], '\nTest accuracy:', scores[1], '\nDice Coefficient Accuracy:', dice_score)
    return model

# Training GAN: 
開發者ID:ardamavi,項目名稱:3D-Medical-Segmentation-GAN,代碼行數:25,代碼來源:train.py

示例10: build_tensorboard

# 需要導入模塊: from keras import callbacks [as 別名]
# 或者: from keras.callbacks import TensorBoard [as 別名]
def build_tensorboard(tmp_generator, tb_folder):
        for a_file in os.listdir(tb_folder):
            file_path = join(tb_folder, a_file)
            try:
                if os.path.isfile(file_path):
                    os.unlink(file_path)
            except Exception as e:
                print(e, file=sys.stderr)

        tb = TensorBoard(tb_folder, write_graph=False, histogram_freq=1, write_grads=True, write_images=False)
        x, y = next(tmp_generator)

        tb.validation_data = x
        tb.validation_data[1] = np.expand_dims(tb.validation_data[1], axis=-1)
        if isinstance(y, list):
            num_targets = len(y)
            tb.validation_data += [y[0]] + y[1:]
        else:
            tb.validation_data += [y]
            num_targets = 1

        tb.validation_data += [np.ones(x[0].shape[0])] * num_targets + [0.0]
        return tb 
開發者ID:d909b,項目名稱:perfect_match,代碼行數:25,代碼來源:main.py

示例11: create_initial_model

# 需要導入模塊: from keras import callbacks [as 別名]
# 或者: from keras.callbacks import TensorBoard [as 別名]
def create_initial_model(name):
    full_filename = os.path.join(conf['MODEL_DIR'], name) + ".h5"
    if os.path.isfile(full_filename):
        model = load_model(full_filename, custom_objects={'loss': loss})
        return model

    model = build_model(name)

    # Save graph in tensorboard. This graph has the name scopes making it look
    # good in tensorboard, the loaded models will not have the scopes.
    tf_callback = TensorBoard(log_dir=os.path.join(conf['LOG_DIR'], name),
            histogram_freq=0, batch_size=1, write_graph=True, write_grads=False)
    tf_callback.set_model(model)
    tf_callback.on_epoch_end(0)
    tf_callback.on_train_end(0)

    from self_play import self_play
    self_play(model, n_games=conf['N_GAMES'], mcts_simulations=conf['MCTS_SIMULATIONS'])
    model.save(full_filename)
    best_filename = os.path.join(conf['MODEL_DIR'], 'best_model.h5')
    model.save(best_filename)
    return model 
開發者ID:Narsil,項目名稱:alphagozero,代碼行數:24,代碼來源:model.py

示例12: init_callbacks

# 需要導入模塊: from keras import callbacks [as 別名]
# 或者: from keras.callbacks import TensorBoard [as 別名]
def init_callbacks(self):
        # self.callbacks.append(
            # ModelCheckpoint(
                # filepath=os.path.join(self.config.checkpoint_dir, '%s-{epoch:02d}-{val_loss:.2f}.hdf5' % self.config.exp_name),
                # monitor=self.config.checkpoint_monitor,
                # mode=self.config.checkpoint_mode,
                # save_best_only=self.config.checkpoint_save_best_only,
                # save_weights_only=self.config.checkpoint_save_weights_only,
                # verbose=self.config.checkpoint_verbose,
            # )
        # )

        # self.callbacks.append(
                # TensorBoard(
                    # log_dir=self.config.tensorboard_log_dir,
                    # write_graph=self.config.tensorboard_write_graph,
                # )
            # )
        #學習率衰減
        reduce_lr = callbacks.ReduceLROnPlateau(monitor='val_loss', factor=1/math.e,
                                                verbose=1, patience=self.patience, min_lr=self.min_lr)
        self.callbacks.append(reduce_lr)  
        # if hasattr(self.config,"comet_api_key"):
            # from comet_ml import Experiment
            # experiment = Experiment(api_key=self.config.comet_api_key, project_name=self.config.exp_name)
            # experiment.disable_mp()
            # experiment.log_multiple_params(self.config)
            # self.callbacks.append(experiment.get_keras_callback()) 
開發者ID:xyj77,項目名稱:MCF-3D-CNN,代碼行數:30,代碼來源:liver_trainer.py

示例13: trainModel

# 需要導入模塊: from keras import callbacks [as 別名]
# 或者: from keras.callbacks import TensorBoard [as 別名]
def trainModel(self, baseCoder, name):
        x_train, x_test = AutoEncoder.getData(self)
        if id(baseCoder) == id(ConvCoder):
            x_train = np.reshape(x_train, (len(x_train), 28, 28, 1))
            x_test = np.reshape(x_test, (len(x_test), 28, 28, 1))

        autoencoder = AutoEncoder.getAutoEncoder(self, baseCoder)
        autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy')
        autoencoder.fit(x_train, x_train, epochs=10, batch_size=64, shuffle=True,
                        validation_data=(x_test, x_test),
                        callbacks=[TensorBoard(log_dir=name)], verbose=1)
        AutoEncoder.printSummary(self, autoencoder)
        AutoEncoder.saveModel(self, autoencoder, name + '.h5') 
開發者ID:akshaybahadur21,項目名稱:DigiEncoder,代碼行數:15,代碼來源:Coder.py

示例14: callbacks

# 需要導入模塊: from keras import callbacks [as 別名]
# 或者: from keras.callbacks import TensorBoard [as 別名]
def callbacks(logdir):
  model_checkpoint = ModelCheckpoint("weights_train/weights.{epoch:02d}-{loss:.2f}.h5", monitor='loss', verbose=1, period=10) 
  tensorboard_callback = TensorBoard(log_dir=logdir, write_graph=True, write_images=True, histogram_freq=1)
  plateau_callback = ReduceLROnPlateau(monitor='loss', factor=0.99, verbose=1, patience=0, min_lr=0.00001) 
  #return [CheckPoints(), tensorboard_callback, LrReducer()]
  return [model_checkpoint, tensorboard_callback, plateau_callback, LrReducer()] 
開發者ID:Vladkryvoruchko,項目名稱:PSPNet-Keras-tensorflow,代碼行數:8,代碼來源:callbacks.py

示例15: train

# 需要導入模塊: from keras import callbacks [as 別名]
# 或者: from keras.callbacks import TensorBoard [as 別名]
def train(model, annotation_path, input_shape, anchors, num_classes, log_dir='logs/'):
    model.compile(optimizer='adam', loss={
        'yolo_loss': lambda y_true, y_pred: y_pred})
    logging = TensorBoard(log_dir=log_dir)
    checkpoint = ModelCheckpoint(log_dir + "ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5",
        monitor='val_loss', save_weights_only=True, save_best_only=True, period=1)
    batch_size = 15
    val_split = 0.1
    with open(annotation_path, encoding='UTF-8') as f:
        lines = f.readlines()
    np.random.shuffle(lines)
    num_val = int(len(lines)*val_split)
    num_train = len(lines) - num_val
    print('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, batch_size))


    try :
        #########2、修改epochs為30 ###########
        model.fit_generator(data_generator_wrap(lines[:num_train], batch_size, input_shape, anchors, num_classes),
            steps_per_epoch = max(1, num_train // batch_size),
            validation_data = data_generator_wrap(lines[num_train:], batch_size, input_shape, anchors, num_classes),
            validation_steps = max(1, num_val // batch_size), epochs = 30, initial_epoch = 0)
    except :
        print("error")
    finally:
        model.save_weights(log_dir + 'trained_weights_except.h5')
    model.save_weights(log_dir + 'trained_weights.h5') 
開發者ID:lijialinneu,項目名稱:keras-yolo3-master,代碼行數:29,代碼來源:train.py


注:本文中的keras.callbacks.TensorBoard方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。