當前位置: 首頁>>代碼示例>>Python>>正文


Python backend.var方法代碼示例

本文整理匯總了Python中keras.backend.var方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.var方法的具體用法?Python backend.var怎麽用?Python backend.var使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.backend的用法示例。


在下文中一共展示了backend.var方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: categorical_crossentropy_and_variance

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import var [as 別名]
def categorical_crossentropy_and_variance(y_true, y_pred):
        return K.categorical_crossentropy(y_true, y_pred) + 10 * K.var(K.mean(y_pred, axis=0)) 
開發者ID:antorsae,項目名稱:sp-society-camera-model-identification,代碼行數:4,代碼來源:train.py

示例2: __call__

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import var [as 別名]
def __call__(self, y_true, y_pred):
        # There are additional parameters for this function
        # Note: some of the 'modes' for edge behavior do not yet have a
        # gradient definition in the Theano tree
        #   and cannot be used for learning

        kernel = [self.kernel_size, self.kernel_size]
        y_true = K.reshape(y_true, [-1] + list(self.__int_shape(y_pred)[1:]))
        y_pred = K.reshape(y_pred, [-1] + list(self.__int_shape(y_pred)[1:]))

        patches_pred = KC.extract_image_patches(y_pred, kernel, kernel, 'valid',
                                                self.dim_ordering)
        patches_true = KC.extract_image_patches(y_true, kernel, kernel, 'valid',
                                                self.dim_ordering)

        # Reshape to get the var in the cells
        bs, w, h, c1, c2, c3 = self.__int_shape(patches_pred)
        patches_pred = K.reshape(patches_pred, [-1, w, h, c1 * c2 * c3])
        patches_true = K.reshape(patches_true, [-1, w, h, c1 * c2 * c3])
        # Get mean
        u_true = K.mean(patches_true, axis=-1)
        u_pred = K.mean(patches_pred, axis=-1)
        # Get variance
        var_true = K.var(patches_true, axis=-1)
        var_pred = K.var(patches_pred, axis=-1)
        # Get std dev
        covar_true_pred = K.mean(patches_true * patches_pred, axis=-1) - u_true * u_pred

        ssim = (2 * u_true * u_pred + self.c1) * (2 * covar_true_pred + self.c2)
        denom = ((K.square(u_true)
                  + K.square(u_pred)
                  + self.c1) * (var_pred + var_true + self.c2))
        ssim /= denom  # no need for clipping, c1 and c2 make the denom non-zero
        return K.mean((1.0 - ssim) / 2.0) 
開發者ID:keras-team,項目名稱:keras-contrib,代碼行數:36,代碼來源:dssim.py

示例3: img_normalization

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import var [as 別名]
def img_normalization(img_input, m0=0.0, var0=1.0):
    m = K.mean(img_input, axis=[1,2,3], keepdims=True)
    var = K.var(img_input, axis=[1,2,3], keepdims=True)
    after = K.sqrt(var0*K.tf.square(img_input-m)/var)
    image_n = K.tf.where(K.tf.greater(img_input, m), m0+after, m0-after)
    return image_n

# atan2 function 
開發者ID:luannd,項目名稱:MinutiaeNet,代碼行數:10,代碼來源:CoarseNet_utils.py

示例4: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import var [as 別名]
def call(self, inputs, **kwargs):
        input_shape = K.int_shape(inputs)
        tensor_input_shape = K.shape(inputs)

        # Prepare broadcasting shape.
        reduction_axes = list(range(len(input_shape)))
        del reduction_axes[self.axis]
        broadcast_shape = [1] * len(input_shape)
        broadcast_shape[self.axis] = input_shape[self.axis] // self.groups
        broadcast_shape.insert(1, self.groups)

        reshape_group_shape = K.shape(inputs)
        group_axes = [reshape_group_shape[i] for i in range(len(input_shape))]
        group_axes[self.axis] = input_shape[self.axis] // self.groups
        group_axes.insert(1, self.groups)

        # reshape inputs to new group shape
        group_shape = [group_axes[0], self.groups] + group_axes[2:]
        group_shape = K.stack(group_shape)
        inputs = K.reshape(inputs, group_shape)

        group_reduction_axes = list(range(len(group_axes)))
        group_reduction_axes = group_reduction_axes[2:]

        mean = K.mean(inputs, axis=group_reduction_axes, keepdims=True)
        variance = K.var(inputs, axis=group_reduction_axes, keepdims=True)

        inputs = (inputs - mean) / (K.sqrt(variance + self.epsilon))

        # prepare broadcast shape
        inputs = K.reshape(inputs, group_shape)
        outputs = inputs

        # In this case we must explicitly broadcast all parameters.
        if self.scale:
            broadcast_gamma = K.reshape(self.gamma, broadcast_shape)
            outputs = outputs * broadcast_gamma

        if self.center:
            broadcast_beta = K.reshape(self.beta, broadcast_shape)
            outputs = outputs + broadcast_beta

        outputs = K.reshape(outputs, tensor_input_shape)

        return outputs 
開發者ID:titu1994,項目名稱:keras-global-context-networks,代碼行數:47,代碼來源:group_norm.py

示例5: __call__

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import var [as 別名]
def __call__(self, y_true, y_pred):
        """ Call the DSSIM Loss Function.

        Parameters
        ----------
        y_true: tensor or variable
            The ground truth value
        y_pred: tensor or variable
            The predicted value

        Returns
        -------
        tensor
            The DSSIM Loss value

        Notes
        -----
        There are additional parameters for this function. some of the 'modes' for edge behavior
        do not yet have a gradient definition in the Theano tree and cannot be used for learning
        """

        kernel = [self.kernel_size, self.kernel_size]
        y_true = K.reshape(y_true, [-1] + list(self.__int_shape(y_pred)[1:]))
        y_pred = K.reshape(y_pred, [-1] + list(self.__int_shape(y_pred)[1:]))
        patches_pred = self.extract_image_patches(y_pred,
                                                  kernel,
                                                  kernel,
                                                  'valid',
                                                  self.dim_ordering)
        patches_true = self.extract_image_patches(y_true,
                                                  kernel,
                                                  kernel,
                                                  'valid',
                                                  self.dim_ordering)

        # Get mean
        u_true = K.mean(patches_true, axis=-1)
        u_pred = K.mean(patches_pred, axis=-1)
        # Get variance
        var_true = K.var(patches_true, axis=-1)
        var_pred = K.var(patches_pred, axis=-1)
        # Get standard deviation
        covar_true_pred = K.mean(
            patches_true * patches_pred, axis=-1) - u_true * u_pred

        ssim = (2 * u_true * u_pred + self.c_1) * (
            2 * covar_true_pred + self.c_2)
        denom = (K.square(u_true) + K.square(u_pred) + self.c_1) * (
            var_pred + var_true + self.c_2)
        ssim /= denom  # no need for clipping, c_1 + c_2 make the denorm non-zero
        return K.mean((1.0 - ssim) / 2.0) 
開發者ID:deepfakes,項目名稱:faceswap,代碼行數:53,代碼來源:losses.py


注:本文中的keras.backend.var方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。